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Problem definition: Carbon abatement opportunities are diverse, making it difficult to classify them.

Do latent classes of carbon abatement opportunities exist and is there a type that is financially and

environmentally superior?

Methodology/results: In this study, we classify 16,525 implemented carbon abatement projects using

text analysis. We benchmark our clustering method to the latent Dirichlet allocation model and verify

our classifications using a crowd-sourcing platform. We then compare the payback period, financial hurdle

(measured in upfront cost), savings, and carbon emissions reduction by type. Our results show that latent

classes exist, and they statistically differ in the metrics we examine. Our regression results show that

the type of project explains more of the variation in the financial and environmental outcomes than the

firm-level financial controls we included. We find that liquidity (measured using cash-to-asset and current

ratios) is associated with the number of reported projects, but the magnitude and direction varies by

type. Our extension shows that marginal abatement costs statistically differ by type with a few exceptions.

Lastly, we show that our classification is robust to sector-level variation.

Managerial implications: Although the results show that no single type of opportunity dominates in all

four metrics, our classification provides a ranking of the types firms should pursue depending on their goals.

Our results suggest that firms likely place different weights across these four metrics. This means that

policies targeted at making investment costs more attractive (e.g., subsidies or better financing) may not

have the same impact on firms that put more weight on savings compared to those more sensitive to costs.

A classification of opportunities can contribute towards understanding whether a unifying theory or pattern

across carbon abatement activities may exist or not.
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1. Introduction

The global Greenhouse Gas (or “carbon emissions”) abatement potential from the adoption of

more energy-efficient technologies and process improvements is estimated at 38 gigatons, roughly

a third of which come with substantial cost-savings (Nauclér and Enkvist 2009; Enkvist et al.

2010). Some of the largest global firms have started to respond to climate change by investing in

1
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opportunities that lower their carbon footprint. Many firms are now investing in corporate green

bonds (Flammer 2021), and these funds are used to finance the types of projects we examine.

Still, very little empirical work has been done to examine the types of opportunities firms pursue

to reduce their carbon footprint (Gillingham and Stock 2018). In this paper, we explore whether

latent classes of carbon abatement opportunities exist. If so, is there a type that financially and

environmentally dominates the rest?

Identifying the different types of carbon abatement opportunities is important for at least four

reasons. First, a clear classification of these opportunities will allow us to examine opportunity-

specific characteristics, such as cost, payback period, and annual savings, and whether those vary

by type. This will help identify types of opportunities that are financially and environmentally

superior. If a dominant type of opportunity exists, then firms should pursue that type first.

Second, although it is well-established that firms are more likely to pursue opportunities with

shorter payback periods, lower cost, higher savings, and higher carbon emissions reduction (Ander-

son and Newell 2004), our findings can suggest whether firms place equal weights across these

metrics. If there is substantial variation in these metrics across types, then that would suggest

that these dimensions are not flat, i.e., firms do not necessarily weigh these metrics (or attributes)

equally.

Third, our results have implications for designing policy. For example, policies designed to make

savings more attractive (e.g., a carbon tax) may not necessarily encourage all firms equally because

some firms may place more weight on upfront costs rather than savings. Fourth, we will explore

whether measures of liquidity (i.e., cash-to-asset and the current ratios) explain adoption patterns,

and we will compare the results between aggregating across different types and doing it separately.

Our paper departs from earlier works in carbon emissions management in several ways. Instead

of examining a single opportunity in isolation (e.g., more energy efficient light bulbs or solar

panels), we explore the set of implemented carbon abatement projects. Most papers in carbon

emissions management focus on measurement (Blanco et al. 2016; Jira and Toffel 2013), allocation

(Caro et al. 2013; Sunar and Plambeck 2016; Sunar 2016; Gopalakrishnan et al. 2021), or regula-

tion (Kroes et al. 2012; Drake 2018; Subramanian et al. 2007). Very little work has been done

to explore the profitability of the types of opportunities to reduce carbon emissions. Creating a

classification of potential opportunities can contribute towards understanding whether or not a

unifying theory or pattern exists across carbon abatement activities.

We examine carbon abatement projects that firms disclose to CDP, a non-profit organization

that has been successful in engaging corporations to disclose their climate change strategies. The

CDP works with more than 500 global institutional investors with combined assets of $96 trillion

(CDP 2018). The CDP invites publicly traded companies with the largest market capitalization
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(e.g., firms listed on the FT500, S&P 500, FTSE 100, etc.) to take their climate change surveys,

which includes questions on investments pursued by firms to reduce their carbon footprint. Many

global firms, such as Apple, Boeing, Bayer, and Cisco, annually take the CDP survey.

There is a copious amount of text within the carbon abatement projects disclosed to CDP,

but this resource is underutilized. Analyzing and comparing a large amount of text is arduous,

so we address this challenge by using text-analysis methods designed to examine a collection of

documents that share the same diction and jargon. We benchmark our results with the latent

Dirichlet allocation (LDA), one of the most widely-used text classification methods. We show that

our method gives unique outcomes within the top-20 words that loaded for each type, making our

method easier to interpret compared to the LDA. We also verify our method using a crowd-sourcing

platform. We construct a statistical measure comparable to Cohen’s kappa to measure multi-rater

reliability with an algorithm. The test statistic has an agreement value of 0.73, which is considered

substantial based on Cohen’s standards.

We discovered six latent types of opportunities based on our analysis of 16,525 projects disclosed

by 1,305 firms to CDP from 2011−20161. Using fixed-effects regression models and tests of equality

of coefficients, we did not find a single type of opportunity that is superior in all financial and

environmental metrics. Although the interpretation of our latent classifications is subjective (as

with any latent classification method), we provide our best description of each type by examining

the projects that cluster together.

We find that the average payback periods, investment costs, savings, and carbon emissions

reductions are statistically different across types (with a few exceptions), and our classification can

prescribe a ranking of opportunities based on the priorities of a company. We find that projects

we labeled renewable energy have the longest average payback period at 3.74 years and the highest

median investment cost at $845,000. The median investment cost for renewable energy projects is

almost eight times greater than the overall median of $108,000 across all projects. The two types

we labeled transportation and materials have the shortest average payback periods at 1.98 and

2.07 years. Although these types are financially attractive, they do not have the lowest upfront

cost. Projects we labeled as buildings have the lowest median investment cost at $56,000, but they

have the lowest annual carbon emissions reduction at a median of 140 metric tons. We conduct

robustness tests by sector and show that our overall rankings hold in most sectors, suggesting that

the classification is potentially generalizable across sectors.

There are eight sections in this paper. We discuss the background and theory in Section 2. We

describe the data and summary statistics in Section 3, followed by the methods in Section 4. We

1 We decided to focus from 2011−2016 because Blanco et al. (2020) find that the profitability of opportunities reported
during this window remained relatively stable.
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benchmark and verify our method in Section 5, followed by the results and discussion in Section 6.

We conduct an extension and robustness checks in Section 7. The final remarks are in Section 8.

2. Background, Related Literature and Theory

We begin with related literature on the metrics we examine in this study. Then we introduce a

simple decision framework that illustrates how firms can choose between opportunities based on

the metrics we have chosen. The model, although simple, has the flexibility to allow firms to place

different weights on the different metrics (or attributes). This captures how firms can rank the

opportunities even if they have different goals (e.g., higher savings versus large carbon emissions

reductions). We also include a section with a short discussion on liquidity and how that may

influence the number of investments firms implement. We end this section with a few related papers

on text analysis in sustainable operations management.

2.1. Financial and Environmental Metrics of Carbon Abatement Opportunities

The large upfront cost, small savings, or uncertain carbon abatement outcomes can limit the

adoption of these carbon abatement opportunities (Aflaki et al. 2013; Jaffe and Stavins 1994).

Using a government-sponsored energy audit, Anderson and Newell (2004) find that projects with

longer payback periods, higher upfront costs, lower annual savings, and lower energy conservation

are less likely to get adopted. However, they do not mention which types of energy efficiency

projects dominate in these criteria. It is well-established that these metrics matter to the firm, so

instead of examining these characteristics and how they influence adoption, we identify whether a

specific type of opportunity dominates in these financial and environmental metrics. The projects

we examine have already been implemented, therefore firms are able to provide actual cost and

more accurate figures compared to projected values. This provides insights on the actual carbon

reduction experience of firms.

There are other studies that explore the economic and non-economic factors that influence the

adoption of energy efficiency opportunities. For example, Fleiter et al. (2012) show that projects

with shorter payback periods are more likely to get adopted. Using data from the Industrial Assess-

ment Centers (IAC), Muthulingam et al. (2013) find that non-economic factors such as placing

opportunities higher on a list is associated with higher rates of adoption. Blass et al. (2014) and

Dowell and Muthulingam (2017) also use the IAC dataset to examine manager-related and project-

level factors (respectively) that may impede adoption. Blass et al. (2014) find that when operations

managers are involved adoption rates increase by 13.4%. Dowell and Muthulingam (2017) find that

more disruptive opportunities are less likely to get adopted. The IAC data focus on opportunities

that are recommended by a government-led program while the projects we examine are not.
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Some scholars claim that the rate of adoption of profitable carbon abatement opportunities

remains slow (Gerarden et al. 2015), but there are studies that observe the opposite (Kok et al.

2011). Gillingham et al. (2009) provide a comprehensive review of some of the market and behav-

ioral barriers associated with the slow adoption of energy efficiency, and they mention several

areas in energy efficiency where empirical evidence is limited. Our contribution is to examine

opportunity-specific characteristics rather than firm or program-specific idiosyncrasies.

2.2. Comparing Opportunities Based on Several Metrics

We present a simple decision model for how firms can compare two types of opportunities based

on the different metrics we described in 2.1. Let Zk be a vector of n metrics (or attributes) of an

opportunity, Zk = (zk1, zk2, . . . , zkn). Suppose that each component is greater than zero and that

higher values are more attractive. (For attributes where lower values are more attractive, we can

use its inverse.) Let wj denote (non-zero positive) weights on how important attribute j is to the

firm, and that the sum of the weights add to one,
∑n

j=1wj = 1. Two opportunities are compared

by computing the following product:

P (Zk/Zl) =
n∏

j=1

(zkj/zlj)
wj . (1)

If the value of P (Zk/Zl) is greater than 1, then opportunity Zk is preferred over Zl. We prove in the

Online Companion that if a certain type of opportunity dominates all other types, that is zkj > zlj

for each j = 1, . . . , n and k 6= l, then P (Zk/Zl)> 1 for any weighting scheme such that
∑n

j=1wj = 1.

This framework can be used to rank opportunities based on priorities of the firm encoded in wj.

2.3. Firm Liquidity and Types of Opportunities

There is a rich literature in the link between liquidity and investments (Fazzari et al. 1987; Kaplan

and Zingales 1997), but very little empirical work has been done to examine measures of liquidity

on the types of opportunities firms pursue to reduce their carbon footprint. One reason for this is

that data on carbon abatement investments for large firms have only been collected in the past

decade. We further contribute to this literature by not only exploring the link between two measures

of liquidity, the cash-to-asset and the current ratios, but we examine whether these patterns are

consistent or different by type of investment.

Examining the link between firm liquidity and carbon abatement investments by type is impor-

tant for at least three reasons. First, investment decisions by firms are sensitive to liquidity.

Although this sensitivity depends on whether firms are financially constrained or not (Cleary 1999),

it is beyond the scope of this paper to quantify these constraints, which is not a trivial endeavor

(Kaplan and Zingales 1997). Instead we want to explore the link between liquidity and the type

of carbon abatement investments firms pursue. Second, capital constraints have been identified as
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one of the potential barriers in the adoption of energy-saving opportunities (Nauclér and Enkvist

2009, p. 17). Very few papers have examined this connection at the scale (number of global firms)

and breadth (by type of opportunity) we do so here. Third, although it is not going to be surprising

to see a link between liquidity and the number of opportunities firms pursue, it remains unclear

whether the association between measures of liquidity vary by type. By exploring these patterns we

can infer which firms (i.e., high or low liquidity firms) match with certain types of opportunities.

By doing so, we are able to better design policies that account not only for the type of opportunity

but are also flexible to different types of firms.

2.4. Text Analysis and Sustainable Operations Management

Text mining is uncommon in sustainable operations management, but its application in this area

is becoming more relevant. Text mining is more common in services (e.g., Mankad et al. 2016;

Chen and Mankad 2022) and marketing (e.g., Büschken and Allenby 2016; Kim and Allenby 2022)

or at the interface of both (Keskin et al. 2022), but its application in sustainable operations is

growing. For instance, Blanco (2021) used text analysis to identify the various climate change

management practices that contributed to shifts in climate change disclosures. There are also appli-

cations of natural language processing in sustainable supply chain research (Huang et al. 2020a)

and the adoption of solar panels (Huang et al. 2020b). Our paper contributes to this growing body

of literature by showing how text analysis can be used to classify carbon abatement opportunities

that firms can implement.

3. Data

The CDP currently holds one of the most comprehensive collections of climate change-related

surveys from the largest companies around the world (CDP 2020). Each year CDP invites firms

with the largest market capitalization from 90 countries, and over 2,000 firms annually submit

their climate change surveys.

We use firm responses to question CC3.3b in 2016 and the corresponding questions in previous

years. (See the Online Companion for a screenshot of the survey questions.) The CDP survey

changes each year, which can make it difficult to merge several years of responses, but the CDP

provided us a way to identify related questions from year to year. Firms describe their carbon

emissions reduction activity and report the cost, annual monetary savings and annual carbon

emissions reduction in question CC3.3b (2016).

Prior to 2015, CDP did not collect whether the source of emissions reduction is from Scope 1, 2

or 32, but the reported projects in 2015 and 2016 mostly cover Scopes 1 and 2. In 2016, roughly 39%

2 Scope 1 referts to direct emissions. Scope 2 refers to emissions from the purchase of electricity or heat. Scope 3
refers to emissions within the supply chain not included in Scopes 1 and 2.
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of the reported projects cover Scope 1 and 63% of the projects cover Scope 2; these two numbers

exceed 100% because some projects cover both Scopes 1 and 2. Only 14% of the reported projects

in 2016 cover any Scope 3 emissions. The distribution of Scopes 1 and 2 in 2015 are similar at

42% and 63% respectively. Only 15% of reported projects in 2015 include any Scope 3 emissions.

Carbon footprinting from Scopes 1 and 2 sources is more mature compared to Scope 3 (Blanco

et al. 2016; Blanco 2021), so we believe that these estimates are reasonably accurate.

In the next subsections, we provide excerpts of the reported carbon abatement projects, then we

describe the variation in the reporting.

3.1. Examples of Carbon Abatement Projects Reported to CDP

We selected six excerpts from the survey responses to provide examples of the different carbon

abatement projects firms report. The description, cost, annual monetary savings, payback period,

and annual carbon emissions reduction are summarized in Table 1. The first two examples are

from Goodyear and SunPower Corp. in 2012 and 2016 respectively. Goodyear, a large US-based

tire company, implemented a building-related energy efficiency project in their facility. The total

cost of the project was around $59,400, and the annual savings was $21,120. The payback period

is 2.81 years. Goodyear avoided 106 metric tons of carbon emissions from this initiative. SunPower

Corp., a US-based solar energy company, reported adding new solar projects to their sites. The

total cost of the project was roughly $645,000 with an annual savings of $75,0003. The payback

period for the solar project is long at 8.61 years. The annual emissions reduction from the project

is 296 metric tons.

The next two examples are from Bemis and Air Products & Chemicals. Bemis, a US-based global

manufacturer of flexible packaging products, reported replacing their boiler at one of their facilities.

The total cost of the project was $248,000 with an annual savings of $138,000. The payback

period for this investment is 1.8 years with an annual emissions reduction of 1,718 metric tons.

Air Products & Chemicals is an American corporation that sells gases and chemicals for industrial

use. In 2015, they reported carbon emissions reduction opportunities related to transportation and

delivery that reduced fuel consumption. The cost of the project was $400,000, and the annual

savings is $670,000. The project has a very short payback period of less than one year, and a large

carbon emissions reduction of 1,300 metric tons per year.

The last two examples are from Raytheon and Royal KPN. Raytheon, a US-based defense

manufacturing company, implemented sustainability training programs and offered incentives to

employees who performed energy-saving initiatives. The total cost for implementing these programs

3 This firgure captures the avoided fuel costs in switching to renewable energy. A detailed description of how companies
should calculate monetary savings are available in pages 55-60 of the 185-page CDP survey guidelines. The survey
guidelines are available upon request.
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Table 1 Examples of carbon abatement opportunities firms disclose.

Year Company Description Total Cost
Annual
Savings

Payback
period
(years)

CO2e
reduction

2012 Goodyear Insulated the building envelope of
the process oil storage area to main-
tain a certain temperature.

$59,400 $21,120 2.81 106

2016 SunPower
Corp.

We installed more new solar projects
at a number of our sites in 2015.

$645,550 $75,000 8.61 296

2015 Bemis Boiler replacement at US facility $248,000 $138,000 1.80 1,718

2015 Air Products
& Chemicals

Voluntary improvements to trans-
portation vehicles and delivery route
optimization, reducing fuel use.

$400,000 $670,000 0.60 1,300

2016 Raytheon
Company

Implemented short training modules
of various sustainability programs
and offered rewards on energy-based
actions for employees who complete
a given task.

$20,000 $75,000 0.27 1,000

2013 Royal KPN Eco-design for customers: provided
energy-efficient modems and setup
boxes to consumers.

$136,013 $ 408,040 0.33 10,000

Notes: The annual avoided Greenhouse Gas emissions are in metric tons of carbon emissions equivalent or CO2e.
The values reported here are not adjusted to 2020 values, but the data on cost and savings in all analyses have
been adjusted to 2020 values.

was $20,000 with an annual savings of $75,000 and an annual carbon abatement of 1,000 metric

tons. The payback for this initiative is short at 0.27 years. Royal KPN, a Dutch telecommunica-

tions company, described their carbon reduction initiatives with creating energy-efficient products

for their customer. They spent $136,013 for this initiative but saved $408,040 and avoided 10,000

metric tons of carbon emissions annually.

These examples show the diversity of opportunities firms can pursue. The total annual carbon

emissions reduction in this study is roughly 38 million metric tons; this is equivalent to removing

roughly 76 100-MW coal power plants around the world4.

3.2. The Variation in Text and Reported Metrics

There is substantial variation in the text of reported carbon abatement projects. Table 2 summa-

rizes the total number of firm responses in this study. The projects include free-form text with

substantial variation in the length across projects and over time. The median word count decreased

from 22 in 2011 to 17 in 2016, and the mean word count decreased from 39 in 2011 to 31 in 2016.

The standard deviation of the word count decreased from 48 in 2011 to 40 in 2016. We will use

text analysis to classify the projects.

The variation in reporting is rich enough for us to explore our research questions. CDP did not

collect emissions reduction data by project in 2011, but they did request this information from

4 Assuming a rate of 0.646 CO2 mt/MWh and a capacity factor of 90%.
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2012−2016. The reporting rate for carbon emissions reduction is high at 92% in 2012 and 99% in

years after 2013. This suggests that firms either became more transparent over time or that they

got better in measuring and reporting these figures.

Table 2 Summary statistics of the carbon emissions reduction activities disclosed to CDP.

(1) (2) (3) (4) (5) (6) (7)

Year
Total
firms

Total
projects

% with
CO2e
data

Median
word
count

Mean
word
count

SD of
word
count

2011 365 1,243 − 22 39 48
2012 579 2,123 92 26 47 55
2013 738 2,742 98 31 46 49
2014 824 3,151 99 25 40 46
2015 880 3,556 99 19 35 43
2016 917 3,710 99 17 31 40

Overall 1,305 16,525 91% 22 39 47

Notes: Any project without information on both savings and costs were not included in this study because we
cannot compare their financial outcomes with other investments. CDP did not collect emissions data of individual
projects in 2011. CO2e is shorthand for carbon emissions equivalent, which is a measure of the Greenhouse Gas
contribution in units of carbon emissions. CO2e is reported in metric tons. We remove any project with payback
periods greater than 20 years as these could potentially be outliers. The number 1,305 represents the number of
unique firms in the data.

3.3. Challenges in Using the CDP Data

CDP reporting is voluntary, and firms may only report investments that are profitable or successful.

Self-selection of attractive projects is very likely, but this may not necessarily limit us from exploring

our research question. Suppose for a moment that only the best (top 3-5 most profitable) projects

are reported. It remains possible to examine whether a superior type exists among the best-reported

projects. This makes the research even more intriguing because the key metrics (cost, savings,

emissions reduction, payback period) remain diverse across the best sample of projects. Our initial

assessment of the data reveals substantial heterogeneity in the reported projects even if firms may

only report their most successful and profitable opportunities.

4. Methods

In this section, we describe the methods to identify latent types of carbon abatement projects

using text analysis. We encode the text in a document-word matrix using weights we designed

for a collection of standardized reports5. We present how we use singular value decomposition

(SVD) to reduce the dimension of the text6, then we use the maximum orientation to classify

the opportunities. At the end of this section, we describe the statistical tests to detect differences

among the types.

5 We interchangeably use the words “reports” and “documents” to refer to the same thing.

6 Principal component analysis (PCA) is related to the SVD, but PCA is typically implemented on the covariance
matrix of the data instead of the data itself.



Blanco: A classification of carbon abatement opportunities
10 MSOM-21-179.R2

4.1. Clustering Types of Carbon Abatement Projects

The SVD decomposes the document-word matrix into three matrices7, where information on the

latent clusters across the documents and the words are encoded. We use the maximum orientation

of the singular vectors of the decomposed matrix to classify the projects. The use of singular

value decomposition (SVD) in text analysis is not new (Deerwester et al. 1990), but our approach

extends its application by using a different weighting scheme to cluster responses. (See the Online

Companion for more details on how we construct the weights.) An advantage of our approach in

this setting is that it accounts for the standardized nature of the reports.

The clustering approach begins with the SVD of the m×n document-word matrix M with rank

k. The values of m and n represent the number of documents and (unique) words in the corpus.

The SVD is a matrix decomposition of M such that

M =
r∑

i=1

siuivi
′+

k∑
i=r+1

siuivi
′, (2)

where si ≥ 0 are constants called the singular values, ui are called the left singular (column) vectors,

and vi
′ are the right singular vectors. One interpretation of equation (2) is that it decomposes M

into r key components and k− r “error terms.”

SVD is applied to reduce the rank of a matrix, thus reducing the dimension of M by approx-

imating it with a few singular values and vectors while retaining the most essential information.

The rank, r, is the number of latent classes we want to retain. In some cases, we want to use r− 1

for the number of latent classes if we want to treat the largest singular value as an intercept. Not

using the largest singular value, which is common in practice, is akin to a regression model with

an intercept; the intercept captures the common (average) theme in the corpus.

The left (ui) and right (vi
′) singular vectors carry information on the documents and words,

respectively. Therefore, we can approximate M with the singular values and the collection of left

and right singular vectors such that M̃ = UrSrVr
′. Each row of the matrix Ur = [u1,u2, . . . ,ur]

corresponds to a document and the columns represent the latent classes. This means that each

document, represented by the rows of U , is a linear combination of the different latent classes.

Similarly, each row vector of Vr = [v1,v2, . . . ,vr] is associated with a word and the columns repre-

sent the latent classes. This means that each word is also a linear combination of the latent classes.

Next, we describe how to cluster each document to one of the r− 1 latent classes.

We cluster each document based on their maximum orientation. To do so, we introduce a new

function, denoted Φ, that takes vectors as inputs and outputs the index of the largest value of

that vector. For example, the maximum value of the 2-dimensional vector x = {0.6,0.8} is 0.8, so

7 The vectors encoded in these matrices are called “singular vectors.”
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Φ(x) = 2, the index of the largest value in the vector. This means the vector x is oriented towards

the y-coordinate of a plane. The vector x = {0.8,−0.6} is oriented towards the x-coordinate. We

use the maximum orientation to classify each document to one of the r− 1 latent classes as shown

in equation (3).

Ur =

type 1 type 2 . . . type r


doc 1 u11 u12 . . . u1r

doc 2 u21 u22 u2r

...
...

. . .
...

doc m um1 um2 . . . umr

by type−−−−→

Φ({u11, u12, . . . , u1r}) = µ1

Φ({u21, u22, . . . , u2r}) = µ2

...
Φ({um1, um2, . . . , umr}) = µm

(3)

Here µi ∈ {1,2, . . . , r} is the latent type of each document. We apply the methods we presented

to cluster 16,525 carbon emissions reduction projects disclosed to CDP.

We present a simple numerical example next. Suppose we have 1,500 reported projects. The

average document frequency is n= 3008 and the standard deviation is σ= 50. In our example, we

limit the types of carbon emissions reduction activities to three. Suppose that some of the common

phrases in the collection include “wind energy,” “recycling,” and “less energy in transportation.”

In this example, we see that the words “wind,” “recycling,” and “transportation” differentiate the

three carbon abatement activities, but the word “energy” does not.

Table 3 shows the document frequency of the words “energy,” “transportation,” “recycling,” and

“wind.” If the word “energy” appears in 446 documents, then its weight is exp(− (446−300)2

502
) = 0.12.

The word “transportation” appears 371 times, which is closer to the average frequency of 300. The

weight on the word “transportation” is 0.60. The word “recycling” appears less frequently than

“transportation” but it is closer to the average at 248, thus, its weight is higher at 0.76 compared to

the weight given to “transportation.” The word “wind” received the highest weight of 0.88 because

it is closest to the average document frequency.

Table 3 Numerical example of the proposed weighing scheme.

Word
Document
frequency

Weights using
eq. (A1)

Energy 446 0.12
Transportation 371 0.60
Recycling 248 0.76
Wind 336 0.88

Notes: equation (A1) is in the Online Companion.

The weights provide a way to measure words that are likely to carry most of the variation

that will differentiate the different types of carbon abatement activities. We apply our clustering

approach to the document-word matrix we created using the weights we proposed.

8 This means that each word appears in roughly 300 documents on average.
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The document-word matrix of the example data in Table 3 is

M =

wind energy recycling transp.( )
project 1 0.88 0.12 - -
project 2 - - 0.76 -
project 3 - 0.12 - 0.60

. (4)

Its left and right singular vectors are

Ur =

type 1 type 2 type 3 project 1 0.99 0 -0.03

project 2 0 1 0

project 3 0.03 0 0.99

, (5)

Vr =

type 1 type 2 type 3


wind 0.99 0 -0.05

energy 0.14 0 0.19

recycling 0.00 1 0.00

transp. 0.02 0 0.98

. (6)

The row-wise maximum of each project and word is boxed. The approach maps each word and

document to exactly one of the latent types.

4.2. Statistically Comparing the Differences in Financial and Environmental
Metrics by Type

We use fixed-effects regression to examine the differences in financial and environmental metrics

by type. We do not intend to test or suggest that the latent types have a causal effect on the key

metrics we examine. The regression-based approach aims to efficiently test the differences in the

key metrics by latent type while controlling for some firm-level characteristics that may influence

the outcomes of carbon abatement opportunities. We can use the results of a single regression to

conduct pairwise tests of equality of coefficients across all pairs of types.

We include seven firm-level controls. We control for cash-to-asset and current ratios as we dis-

cussed in Section 2.3. We include income-to-assets (or returns-to-assets) to control for how effi-

ciently firms use their resources to generate income. We include EBIT9-to-sales ratio to control for

how efficiently a company generates profits from its operations.

We also control for COGS10-to-sales ratios and the fraction of short-term to long-term debt.

COGS-to-sales measures the percent of sales used to cover expenses, a measure of cost efficiency.

The last firm-level control is the fraction of short-term to long-term debt. Short-term debts are

typically obtained at lower (debt) costs but carrying higher short-term debt can be more vulnerable

9 EBIT stands for earnings before income and taxes. This is sometimes referred to as operating earnings.

10 COGS stands for cost of goods sold.
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to liquidity shocks (i.e., not having enough liquidity) compared to firms that keep that ratio low.

We control for this because it may influence the outcomes of carbon abatement activities. All

regression models we test include firm and year fixed effects.

We believe that our approach is also robust to potential regression-based issues of endogeneity.

First, the classification of the projects are external to the firm, that is, our algorithm identified

these classifications and the firms are not aware of our classification approach. Second, firms do

not necessarily know a priori whether their reported project is better or worse compared to what

others will report. Third, the correlation table (in the Online Companion) of the different types

and firm-level characteristics show that the correlations across these variables are very weak.

5. Benchmarking the Clustering Method

We benchmark our method to the latent Dirichlet allocation (LDA), then we validate our classifi-

cations using a crowd-sourcing platform, MTurk. We compare our method to the LDA because it

is one of the most popular text classification methods (Blei et al. 2003).

5.1. Comparing the Classification with the Latent Dirichlet Allocation

We first present the collection of words by class (or cluster) using our method, then we contrast

it with the outcome of the LDA. The top-20 words with the highest scores that loaded within

each type is in Table 4. (We have not yet taken the maximum orientation of the words.) Cluster

A includes the words “trucks,” “driving,” “road,” and “transportation.” The second cluster (B)

includes the words “materials,” “packaging,” and “recycling.” Cluster C consists of the words

“employee,” “awareness,” “staff,” and “campaigns.” So far, the collection of words that loaded

high for clusters A−C are distinct enough to describe each latent type.

The collection of words in the remaining clusters are also distinct. The words “motor,” “com-

pressors,” and “pumps” describe cluster D and the words “fluorescent,” “sensors,” “LEED11,” and

“certification” differentiate cluster E. Cluster F consists of the words “MW12,” “wind,” “fossil,”

“fuel,” and “generated.” The collections of words seem sufficient to characterize each type, but a

closer look at the description of each project within each latent class can provide more context.

Now we present the collection of words with the highest probability of occurring by cluster when

we use the LDA. Although the (latent) clusters using the LDA may not appear in the same order

as the clusters we discovered using our method, we can still compare their outcomes. Table 5

summarizes the collection of the top-20 words with the highest probability by cluster. The first

striking outcome of the LDA is that the words that appear in the top 20 by cluster are not unique.

11 LEED stands for Leadership in Energy and Environmental Design.

12 MW stands for megawatt.
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Table 4 The top 20 words that load on each latent type using the method in Section 4.1.

Cluster A Cluster B Cluster C Cluster D Cluster E Cluster F

trucks materials employee variable fluorescent MW
driving material campaign drives lamps wind
road paper awareness speed friendly fossil
vehicle packaging climate frequency LEED fuels
truck recycling encourage motors certified grid
hybrid recycled day pumps certification biomass
transportation product meetings fans sensors generated
transport raw staff compressors conferencing capacity
engine products utility thermal motion produced
diesel printing external pump France generate
rail plastic promote pressure panels alternative
logistics processes campaigns hot car sources
delivery gases local chillers cars coal
Km resources national load roof produce
engines chain home KW headquarters generating
drivers electronic raise chiller fixtures equivalent
miles greenhouse monetary compressor head metric
route landfill engagement boilers photovoltaic clean
drive environment online ventilation video avoided
routes carried payback MWh policy fired

Notes: This table shows the top-20 words that loaded for each factor. We have not yet taken the maximum
orientation of the words. We decided to cut it off at six types because the top-20 words that loaded the highest in
the subsequent factor were no longer unique. Although we can uniquely cluster each word to a type, we have not
yet done so to benchmark our results.

For instance, the word “energy” appears in the top-20 words across all clusters, and the word

“emissions” appear in five out of the six clusters. In contrast, these two words do not appear in

the top 20 of any cluster in Table 4. The words that appear in the top-20 list in Table 4 are unique

within each cluster. Our method makes it easier to classify and interpret the types.

There are some latent clusters that seem to align between the two methods. Clusters 4 and 6

seem to align with clusters D and A respectively. For example, cluster 4 share common words that

loaded high in cluster D, such as “compressor” and “pump.” Although the collection of words are

different, the two clusters seem to refer to industrial-related processes. Cluster 6 and cluster A

both include the word “transport.” Although the collections of words are different, clusters 6 and

A seem to align with transportation-related projects.

In summary, the top-20 collection of words by type is more distinct by latent class when we use

our method compared to the LDA. Although we believe that the LDA is likely to outperform our

method in most other settings, our benchmark shows that the nature of the data matters and the

classifications are sensitive to the method used to examine the text.
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Table 5 The top 20 words that have the highest probability of occurring in each type based on the Latent

Dirichlet Allocation.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

energy lighting scope air gas energy
solar energy voluntary water savings reduction
emissions LED energy heat emissions fuel
scope projects activity system energy emissions
data building expected cooling fuel reduce
power scope lifetime plant annual scope
electricity efficiency emissions energy natural efficiency
reduce HVAC reduction installation project consumption
system voluntary efficiency control scope employees
savings efficient consumption compressor efficiency environmental
consumption lights project efficiency electricity voluntary
UK systems production pump million fleet
installed upgrades nature compressed projects management
installation emissions type conditioning program time
project office steam pumps reduction green
initiative light plant temperature estimated activities
systems controls process process reduced program
renewable replacement reduce heating cost saving
sites lamps manufacturing replacement reduce vessels
voluntary facilities initiative recovery waste transport

Notes: The words in bold are words that are unique within the top 20 of each cluster.

5.2. Verifying our Clustering Method with Crowdsourcing

Our goal is to determine whether latent types of opportunities exist, and we did so using text

analysis. We verify the outcome of our classification using Amazon Mechanical Turk (MTurk),

a crowd-sourcing platform. Before we present the statistical measures of agreement, we provide

examples of projects that grouped together and how we labeled each cluster.

Table 6 lists several examples of projects that clustered together. Many projects that describe

how to reduce emissions associated with delivery and transportation clustered together. Projects

such as shifting from rail to road or replacing gasoline trucks with ones that use natural gas

clustered within the same group. We label this latent type as transportation.

We describe some examples classified in Clusters B through D. Cluster B are carbon abatement

projects related to redesigning products to reduce the use of raw materials, changing packaging,

recovering materials, and recycling. We labeled this as materials. We label the next cluster of oppor-

tunities as behavioral changes because the examples include training employees to conserve energy

and creating campaigns to promote energy efficiency practices. Cluster D include many examples

related to variable frequency drives (devices that regulate the energy use of electric motors), pumps

and more energy efficient motors. We label these opportunities as industrial processes.

We label the last two clusters as buildings and renewable energy respectively. Cluster E includes

many examples of energy efficient lighting and building certification standards. The last cluster are

projects related to installing renewable energy capacity or purchasing electricity from alternative,
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Table 6 Representative sample of projects that are categorized in each latent type.

Cluster Example responses Author-
defined

classification

A Shift long-distance transportation from road to rail; use hub
and spoke model for package delivery operations; switching
fuel to natural gas or electric hybrid trucks; use of
navigational tools to reduce idle time; optimize vehicle use;
improve ocean-vessel operations

Transportation

B Recover materials from manufacturing; recycle; reduce
packaging; incorporate recycled content into packages and
products; redesign products to reduce the use of raw
materials; conduct life cycle analysis of raw materials

Materials

C Train employees on energy conservation; raise awareness
among employees on environmental initiatives; create
campaigns to promote energy efficiency; encourage video
meetings to reduce business travels

Behavioral
changes

D Replace constant speed motor and inlet shrouds in each
compartmental air handling unit and pumps with new
inverter duty motor controlled by new variable frequency
drives; upgrade to more efficient motors

Industrial
processes

E Retrofit lights; replace existing lamps and fixtures with more
energy efficient bulbs; implement LEED (Leadership in
Energy and Environmental Design) certification standards or
its local equivalent; install motion sensors

Buildings

F Purchase electricity generated from alternative (renewable)
energy sources; purchase wind power; substitute fossil fuel,
coal with biomass; install more renewable energy capacity

Renewable
energy

low-carbon energy sources. Other examples in this cluster include switching from fossil fuel to

biomass energy.

We used MTurk to hire 60 participants to classify 12 investments (2 examples per type) from a

balanced list of 24 investments. We purposefully did not target energy or sustainability experts to

classify the investments to test how effective our classifications are even when presented to those

with little to no background in climate change reporting.

We presented Table 6 to the participants at the start of the survey, then we asked them to

classify each project based on excerpts of the description. We did not include the entire description

because they can be very long; this would likely reduce the response rate and its quality.

There are several practical and managerial implications doing it this way. First, this verifies

whether participants will classify the opportunities in a consistent manner with our method. Sec-

ond, doing it this way also allows us to test the practical use of our descriptions of the latent types.

We then conducted statistical tests to determine the level of agreement of our participants among

each other and with our method.

We measured the level of agreement using a comparable metric to Cohen’s kappa (Cohen 1960),

which is used to measure inter-rater reliability. This test statistic is more robust than calculating

the percentage agreement because we need to account for the possibility that the classification
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matches by chance. However, using Cohen’s kappa without modification is not appropriate in this

scenario because it was designed to measure the agreement between two raters, not multiple ones.

We describe how we calculate the test statistic in the Online Companion.

The test statistic uses the overall agreement p0 and the probability that the raters match the

classification by pure chance pe. The test statistic is κ= (p0−pe)/(1−pe). (The details on how we

calculate p0 and pe are in the Online Companion.) The summary of the percent match across 60

raters and the classification method is in Table 7. The overall agreement is about p0 = 77%, the

chance of agreement is pe = 15%, and κ is roughly 0.73. According to Cohen’s agreement standards,

a value of 0.73 suggests substantial agreement among the raters (Landis and Koch 1977, p. 165)

and the classification algorithm13.

Table 7 Percent match across 60 raters and the classification method.

Type Percent match

Transportation 89.2%
Material 70.0%
Behavioral Changes 86.7%
Industrial Processes 52.5%
Buildings 85.8%
Renewable Energy 77.5%

Overall 76.9%

Five out of the six types of opportunities have agreement rates that are higher than 70%. The

type of opportunity with the lowest agreement rate in Table 7 is industrial processes at 52%, and

transportation has the highest overall agreement at 89%, followed by behavioral changes at 87%.

The agreements rates are reasonably high given that the participants do not necessarily have any

background in climate change reporting or in sustainability. This means that our descriptions of

the classifications have the potential to be used even with those with little to no background in

operations management or sustainability. The overall agreement rate of κ = 0.73 means there is

substantial agreement across the rates and the classification method we implemented.

6. Results and Discussion

Our results in this section show that latent types of opportunities exist and to what extent they

statistically differ in the metrics we examine. We present the summary statistics of payback period,

savings, costs, and the size of emissions reduction by type. We then conduct statistical tests to

confirm their differences. The section ends with results on the association of measures of liquidity

and the number of projects firms report.

13 Cohen suggests that κ values of 0.81 – 0.99 are considered near perfect agreement, 0.61 – 0.80 implies substantial
agreement, and values between 0.41 – 0.60 means moderate agreement. Values between 0.21 – 0.40 represent fair
agreement, and anything below 0.20 is considered weak.
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6.1. Payback Period, Savings, Costs, and Size of Emissions Reduction by Type

Table 8 summarizes the financial metrics and carbon emissions reduction by type. The two types

with the shortest average payback periods are transportation (N=1,859) and materials (N=1,862)

at 1.98 and 2.07 years. This is followed by behavioral changes (N=1,317) and industrial processes

(N=8,135) at an average of 2.16 and 2.87 years. The two types with the longest average payback

periods are buildings (N=2,209) and renewable energy (N=1,143) at 3.18 and 3.74 years. Firms

interested in investments with short payback periods should explore transportation and material-

related opportunities.

There is a substantial variation in the median investment cost, annual savings, and carbon

emissions reduction by type. (All cost and savings data have been adjusted to 2020 USD values.)

We decided to focus on the median rather than the mean because there are a few projects with

extremely large values. We find that renewable energy has the highest median investment cost

at $845,000 and the highest median savings at $735,000 per year. This type also has the largest

annual carbon emissions reduction at 6,042 metric tons. If upfront costs are barriers to adoption

(Anderson and Newell 2004), then this means that the adoption of renewable energy faces high

hurdles despite having the largest carbon abatement potential across all types. Projects we labeled

materials have the second highest median emissions reduction potential at 980 metric tons per year.

We find that buildings have the lowest median investment cost at $56,000, but this also has the

lowest median carbon abatement potential at 140 metric tons of carbon emissions. Firms that are

interested in large carbon abatement opportunities should focus on renewable energy and behavioral

change opportunities. Overall, no type is dominant in all four metrics we examine.

Table 8 Mean payback period, median savings, costs and emissions reduction by cluster.

(1) (2) (3) (4) (5) (6)

Type of opportunity
Total

observations

Mean
payback
period∗

Median
investment

(1,000 USD)

Median
savings

(1,000 USD)

Median
CO2e

avoided

Transportation 1,859 1.98 60 216 850
Materials 1,862 2.07 99 210 980
Behavioral changes 1,317 2.16 80 176 884
Industrial processes 8,135 2.87 122 86 402
Buildings 2,209 3.18 56 39 140
Renewable energy 1,143 3.74 845 735 6,042
Overall summary 16,525 2.72 108 116 500

Notes: ∗Payback period is in years. This is based on observable, disclosed data. The descriptions of each cluster
are based on the results in Tables 4 and 6. Column (5) is annual savings. Column (6) is in metric tons. Costs and
savings data are adjusted to 2020 values.

We can use the results in Table 8 and equation (1) in Section 2.2 to rank the different types of

opportunities based on different weights wj that represent the priority of the firm. For example, if

the weights are equal to each other (i.e., wj = 0.25 for each j), then the order of preferences are
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transportation, renewable energy, materials, behavioral changes, industrial processes, and buildings.

If a weight of 0.70 is placed on carbon emissions reduction and the remaining attributes receive

equal weights of 0.10, then the order of preferences are renewable energy, materials, transportation,

behavioral changes, industrial processes, and buildings. In contrast, if a weight of 0.70 is placed on

cost and the remaining attributes receive equal weights of 0.1, then the order of preferences are

transportation, behavioral changes, materials, buildings, industrial processes, and renewable energy.

There are alternative metrics. For example, we could look at the total investment value or total

annual carbon emissions reduction to have a better sense of the magnitude of implementation by

type. We can also examine the cost or savings per unit emissions abated. These alternative metrics

are available in the Online Companion. We do conduct an extension on a widely-used metric called

marginal abatement costs, and we present our findings using that measure in Section 7.1.

6.2. Are the Financial and Environmental Outcomes Statistically Different by
Type?

Our classification approach is successful in distinguishing types that have short and long payback

periods. We use regression-based tests because this allows us to examine the different types and

their association with the key metrics while controlling for firm-level characteristics that might

influence the outcome variables.

Before we present the results, we briefly comment on the correlation of the dependent and

independent variables. The correlation matrix (available in the Online Companion) shows that the

highest correlation between any two dependent variables is 0.55. This is the correlation between

(the natural log of) savings and carbon emissions reduction. Although the correlations between

any two dependent variable is not zero, none of them are strongly correlated. The correlation

across the different types of opportunities and the seven firm-level controls are weak. The strongest

correlation across these variables is between materials and short-term to long-term debt at 0.08.

In sum, the types of opportunities are weakly correlated with firm-level characteristics.

Table 9 summarizes the regression results. The regression models in Table 9 are the same except

for the outcome variables. The dependent variable in model (1) is payback period. The outcome

variables for models (2) and (3) are the natural logs of cost and savings respectively. (These figures

have been adjusted to 2020 USD values.) The dependent variable in the last model is the natural

log of annual carbon emissions reduction in metric tons.

The goal of this study is to test whether the types of opportunities we discovered vary across

the financial and environmental metrics we selected. To do so, we included indicator variables

for each type except one to avoid multicolinearity. The type labeled transportation is set as the

reference group. We can use the results in Table 9 to conclude whether the remaining five types of

opportunities differ by average payback period, cost, savings or annual carbon emissions reduction
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potential. In model (1), we find no evidence that materials or behavioral change are statistically

significantly different in average payback period to transportation. Model (1) confirms that the

average payback period of transportation is roughly 0.80 years shorter (p < 0.01) when compared to

industrial processes. The average payback period of transportation is roughly 1 - 1.4 years shorter

compared to buildings and renewable energy.

Table 9 Regression results of the association of the latent type and financial or environmental outcomes.

Dependent variable:

Payback Ln(Cost) Ln(Savings) Ln(CO2e)

(1) (2) (3) (4)

(β2) Materials 0.176 0.585∗∗∗ 0.025 0.075
(0.132) (0.220) (0.091) (0.089)

(β3) Behavioral Changes 0.136 −0.003 −0.215∗∗ −0.023
(0.163) (0.262) (0.105) (0.103)

(β4) Industrial Process 0.795∗∗∗ 1.464∗∗∗ −0.208∗∗∗ −0.011
(0.111) (0.208) (0.079) (0.078)

(β5) Buildings 1.002∗∗∗ 1.059∗∗∗ −0.629∗∗∗ −0.482∗∗∗

(0.156) (0.240) (0.097) (0.095)
(β6) Renewable Energy 1.389∗∗∗ 1.402∗∗∗ 0.179 0.443∗∗∗

(0.207) (0.262) (0.112) (0.114)
Cash-to-Asset Ratio −0.967∗∗ 0.283 −0.106 0.388

(0.425) (0.583) (0.453) (0.253)
Current Ratio 0.658 1.108 −0.006 −0.602

(0.675) (1.056) (0.612) (0.463)
PPEGT-to-Asset Ratio −0.522 0.189 0.467 0.254

(0.683) (0.913) (0.491) (0.551)
Income-to-Asset Ratio 0.656 −0.464 −0.548 0.413

(0.598) (0.940) (0.632) (0.438)
EBIT-to-Sales Ratio −0.068 −0.117 −0.165 0.028

(0.140) (0.145) (0.113) (0.090)
COGS-to-Sales Ratio 1.293 −1.316 −1.760∗ 0.549

(1.846) (1.836) (1.028) (1.001)
Short-to-Long-Term Debt Ratio 0.200 0.131 −0.164 −0.334∗

(0.270) (0.393) (0.231) (0.191)

Firm fixed effects Included Included Included Included
Year fixed effects Included Included Included Included

Observations 16,105 13,716 13,716 14,568
R2 0.249 0.375 0.514 0.561
Adjusted R2 0.183 0.324 0.474 0.519

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Robust standard errors in parentheses. We lose observations for cost and
savings due to missing currency data. We can still calculate payback period, but we cannot convert observations
without currency data. The correlation table of all dependent and independent variables are in the Online Com-
panion. The correlation table suggests that the types of opportunities are not strongly correlated with firm-level
characteristics. We also tested models with the cumulative number of projects reported, and the conclusions remain
the same.

Model (2) confirms that types labeled materials, industrial processes, buildings, and renewable

energy are all statistically different to transportation in average (natural log of) costs at the 0.01

significance level. Model (3) shows that behavioral changes, industrial processes, and buildings differ
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statistically in savings to transportation. Model (4) shows that only buildings and renewable energy

are statistically significantly different in the (natural log of) annual carbon emissions reduction.

We are also interested in testing whether the five types of opportunities included in the regression

differ to each other. To do so, we conduct pairwise equality of coefficients hypotheses testing (e.g.,

β2 = β3) for each of the remaining five types. Table (10) summarizes the 10 pairwise tests for each

metric. Row (1) summarizes the equality of coefficients for materials (β2) and behavioral changes

(β3). Columns (1)-(4) present the χ2 values for the test of equality for when the outcome variable

is payback period, cost, savings, and annual carbon emissions reduction, respectively. Column (1)

shows that 7 out of the 10 pairs are statistically significantly different in average payback periods

at the 0.01 level. Column (2) shows that 8 out of the 10 tests have p−values of 0.05 or lower.

Columns (3) and (4) in Table 10 confirm that annual savings and carbon emissions reduction vary

by type. Column (3) shows that 8 out of the 10 tests are statistically significantly different at the

0.01 level. Column (4) shows that 7 out of the 10 tests are statistically significantly different at

the 0.01 level. Overall, Table 10 shows that there are substantial differences in average payback

period, (natural log of) costs, savings, and emissions reduction by type.

Table 10 Tests of equality of coefficients for the types of opportunities for each model in Table 9.

Payback Ln(Cost) Ln(Savings) Ln(CO2e)

(1) (2) (3) (4)

1 β2 - β3 = 0 0.066 6.139∗∗ 7.004∗∗∗ 1.038
2 β2 - β4 = 0 35.573∗∗∗ 23.991∗∗∗ 12.034∗∗∗ 1.482
3 β2 - β5 = 0 34.499∗∗∗ 4.572∗∗ 61.223∗∗∗ 41.890∗∗∗

4 β2 - β6 = 0 36.034∗∗∗ 11.503∗∗∗ 2.272 12.448∗∗∗

5 β3 - β4 = 0 23.424∗∗∗ 51.097∗∗∗ 0.009 0.020
6 β3 - β5 = 0 28.238∗∗∗ 17.671∗∗∗ 17.356∗∗∗ 21.720∗∗∗

7 β3 - β6 = 0 32.537∗∗∗ 27.432∗∗∗ 12.284∗∗∗ 18.315∗∗∗

8 β4 - β5 = 0 2.886∗ 7.073∗∗∗ 37.772∗∗∗ 44.792∗∗∗

9 β4 - β6 = 0 10.039∗∗∗ 0.087 16.242∗∗∗ 25.521∗∗∗

10 β5 - β6 = 0 3.249∗ 1.953 55.109∗∗∗ 65.191∗∗∗

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. (β2) is for materials, (β3) is for behavioral changes, and (β4) is for industrial
processes. (β5) is for buildings and (β6) is for renewable energy.

6.3. Does Firm Liquidity Explain Adoption Patterns?

Firm liquidity, measured with cash-to-asset and current ratios, is associated with the number of

projects firms implement, but the direction varies by type. Table 11 summarizes the regression

results. Model (1) is the regression outcome where the outcome variable is the total number of

projects implemented. Firms implement nine projects on average. Higher measures of cash-to-asset

ratios are, on average, negatively associated with the total number of projects reported (p < 0.01).

We also see that current ratios are negatively associated with the number of projects reported

(p < 0.01). Doing the analysis on the aggregate number of carbon abatement activities may suggest
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that more liquid firms are less likely to implement these projects, but the results are different if

we examine this association by type.

Table 11 Firm liquidity and the number of carbon abatement projects firms implement and report.

Dependent variable: Count of implemented projects

All types Type A Type B Type C Type D Type E Type F

(1) (2) (3) (4) (5) (6) (7)

Cash-to-Asset Ratio −4.697∗∗∗ −0.377∗∗∗ −0.429∗∗∗ −0.258∗∗∗ −3.963∗∗∗ 0.079 0.251∗∗∗

(0.650) (0.090) (0.090) (0.058) (0.561) (0.187) (0.063)
Current Ratio −3.983∗∗∗ 0.661∗∗∗ −0.497∗∗∗ −0.351∗∗ −3.775∗∗∗ −0.208 0.188∗∗

(1.064) (0.145) (0.117) (0.145) (0.568) (0.743) (0.080)
PPEGT-to-Asset Ratio −3.509∗∗∗ −0.136 −0.307∗∗ −0.379∗∗∗ −0.874∗ −2.108∗∗∗ 0.295∗∗∗

(0.868) (0.148) (0.143) (0.118) (0.488) (0.422) (0.087)
Income-to-Asset Ratio −2.455∗ 0.192 −0.302∗ −0.008 −1.971∗ 0.010 −0.374∗∗∗

(1.407) (0.175) (0.166) (0.127) (1.050) (0.292) (0.120)
EBIT-to-Sales Ratio 0.399∗∗ −0.158∗∗∗ −0.061∗∗∗ −0.021 0.433∗∗∗ 0.099∗∗∗ 0.106∗∗∗

(0.198) (0.052) (0.021) (0.023) (0.167) (0.030) (0.022)
COGS-to-Sale Ratio 10.566∗∗∗ 0.362 −0.459∗∗ 0.578∗∗∗ 8.336∗∗∗ 1.554∗∗∗ 0.196

(1.999) (0.333) (0.216) (0.187) (1.700) (0.405) (0.225)
Short-to-Long- 2.197∗∗∗ −0.056 0.155∗∗ −0.007 1.214∗∗∗ 0.841∗∗∗ 0.050
Term Debt Ratio (0.361) (0.061) (0.065) (0.049) (0.240) (0.144) (0.035)

Firm fixed effects Included Included Included Included Included Included Included
Year fixed effects Included Included Included Included Included Included Included

Observations 16,105 16,105 16,105 16,105 16,105 16,105 16,105
Adjusted R2 0.812 0.635 0.661 0.753 0.771 0.807 0.585

Notes: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Type A is labeled transportation. Type B is for materials, type C is for
behavioral changes, and type D is for industrial processes. Type E is for buildings and type F is for renewable energy.
The mean cash-to asset ratio is 0.12. The mean current ratio is 0.57.

Models (2)−(7) are the regression results by type. In model (2), the outcome variable is the

number of projects reported labeled as transportation. The results of models (2)−(5) for the asso-

ciation of cash-to-asset ratio to the number of projects reported are consistent with that of model

(1), but the results of models (6)−(7) are not. In model (6), we find that cash-to-asset ratios are

not statistically significantly associated with the number of building-related projects. In model (7)

we see that the cash-to-asset ratio (and current ratio) are positively associated with the number

of renewable energy projects.

Although we detect statistical significance between liquidity and the number of projects, the

economic magnitude of its association is moderate. The mean cash-to-asset ratio is 0.12 (the median

is 0.09), and the magnitude of the coefficient in model (1) for this variable is −4.7. This means

that going from 0 to 0.22 in cash-to-asset ratio is associated with one less implemented project.

The association of the current ratio is slightly stronger. The mean current ratio is 0.57, and the

coefficient in model (1) is roughly −4.0. This means that going from 0 to 0.25 in the current ratio
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is associated with one less implemented project. At the average current ratio of 0.57, the model

predicts that firm to have two fewer projects.

There are a couple interpretations to the results. One interpretation is that firms that have

high levels of liquidity are not necessarily more likely to fund these projects, with the exception of

renewable energy. This suggests that improving liquidity does not immediately translate to more

implemented projects. Another possible interpretation is that these firms may prefer to remain

liquid than to pursue these opportunities. These findings are not consistent with the literature

that suggest firms are likely to be cash-strapped or that the lack of available cash can be a barrier

to adoption (Nauclér and Enkvist 2009). The result in model (7) shows that firms with higher

cash-to-asset ratios are more likely to implement renewable energy projects. Even if the results are

driven by self-selection it is insightful, that is, firms that have low liquidity select certain types of

opportunities compared to high-liquidity firms. We are not aiming to prove causality, but we show

that the link between liquidity and the number of implemented projects varies by type.

7. Extensions and Robustness Tests

We conduct an extension and robustness tests. We focus on payback period, costs, savings, and

carbon emissions reduction because we can calculate these metrics with the available data with-

out any further assumptions, but there is another widely-used metric used to compare and rank

carbon abatement opportunities: the marginal carbon abatement costs. We will compare marginal

abatement costs by type next. We end this section with a series of tests on whether the findings

are robust to industry effects.

7.1. The Marginal Abatement Cost

The marginal abatement cost is a popular metric used to rank the cost-effectiveness of opportunities

(Enkvist et al. 2007). We decided not to include it in the main analysis or perform regression models

but as an extension because constructing this metric with our data requires a few assumptions.

Using it in regression models is not straightforward as suggested in Taylor (2012), Ward (2014), and

Blanco et al. (2020). Instead, we examine whether the median marginal abatement values differ by

type using the Wilcoxon rank-sum tests.

Meier (1984) is one of the first scholars to study this metric, and several others have used the

same formula to construct marginal abatement cost curves (Lovins and Lovins 1991; Mills et al.

1991). Meier (1984) calculated marginal abatement cost as the net present value (cost minus lifetime

savings) of the project divided by the lifetime carbon emissions reduction14. To calculate marginal

abatement costs we need a discount rate and the estimated lifetime of the project. The range of

14 Although this may appear to look like the average abatement, it is called the marginal abatement cost because
carbon abatement cost curves are constructed by ordering the opportunities based on this value.
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estimates for discount rates of carbon abatement opportunities is wide from 5% to 15% (Lovins and

Lovins 1991; Mills et al. 1991; Koomey and Sanstad 1994). For this study, we assume a discount

rate of 10% to calculate the net present value and use data from the CDP on the average lifetime

of the project.

Table 12 summarizes the mean and median marginal abatement costs by type. The more negative

the marginal abatement cost the more attractive it is because it means that the company can

save that amount per unit of carbon emissions avoided. Here we see that the type with the most

cost-effective carbon abatement value is transportation at mean and median values of −$97.29 and

−$80.41 respectively. Median values are robust to potential outliers compared to the mean, so it

is more likely to be representative of the typical marginal abatement cost rather than the mean.

Using the median values, the next two most attractive opportunities are buildings and behavioral

changes at −$71.75 and −$62.30. The three types with the least attractive marginal abatement

costs are industrial processes at −$59.17, materials at −$55.66, and renewable energy at −$49.76.

Table 12 Mean and median marginal abatement cost ($/metric ton) by type.

Type Count Mean Median

Transportation 1,433 -97.29 -80.41
Materials 1,448 -81.58 -55.66
Behavioral change 956 -79.84 -62.30
Industrial process 6,178 -76.02 -59.17
Buildings 1,680 -84.41 -71.75
Renewable energy 936 -64.85 -49.76

Data are reported in 2020 values.

We compare our estimates of marginal abatement costs with a recent study by Gillingham and

Stock (2018). In that paper (p. 59), the authors compile estimates of 23 carbon emissions reduction

activities. Although they focus on energy efficiency policies, there is some overlap in the examples

of opportunities between their study and ours. They also motivate their paper using the McKinsey

abatement cost curve (c.f. Gillingham and Stock (2018) p. 56 and Enkvist et al. (2007) p. 4). A

striking difference between their results and ours is that only 1 out of the 23 energy efficiency

interventions in Gillingham and Stock (2018) is found to have a negative marginal abatement cost.

In contrast, our results are more consistent with the findings of that of Enkvist et al. (2007) and

subsequent McKinsey & Company reports (Nauclér and Enkvist 2009) that suggest many profitable

opportunities have negative marginal abatement costs. One possible explanation for this difference

in observation is that most studies in economics focus on policies that are designed to encourage

the adoption of energy efficiency opportunities that are not voluntarily pursued because they are

not likely profitable on their own. However, if we examine projects that are voluntarily adopted,

then we begin to see a selection of projects that are profitable and cost-effective on their own.
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Unfortunately, we cannot directly compare our figures with estimates from the McKinsey &

Company cost curve because they do not disclose details of individual opportunities. They do

disclose key assumptions and details on how they arrived at each estimate, but the comprehensive

values of the individual opportunities are not available. We could only infer the value of several

opportunities from the graph. The estimate for commercial insulation on the McKinsey cost curve

is at −$78 (after converting from Euros). This opportunity would likely be classified as buildings,

which has a median value of −$72. Hybrid cars are estimated at around −$40, and this would likely

be classified as transportation, which has a median value of −$80. Waste recycling is estimated to

be around −$17; this opportunity would likely be classified as materials, which has a median value

of −$56. Although the values may be closer for some but not for others, we can confirm that many

of these opportunities have negative marginal abatement cost values.

We tested if the median differences in marginal abatement costs statistically differ by type. To

do so, we conducted Wilcoxon rank-sum tests of marginal abatement costs for two types at a

time. Table ?? in the Online Companion shows that all but four pairs (out of 15) are statistically

significantly different in the median marginal abatement costs. This information can be used to

prioritize which types of opportunities to focus on first if the main metric for making a decision is

based on marginal abatement costs.

7.2. Are the Findings Robust by Sector?

We find that the results are robust for every sector. We provide summary statistics of the average

payback period, median investment cost, and median carbon emissions reduction of each type by

sector. Firms self-identify their sector in the CDP surveys using the Global Industry Classification

Standard (GICS). Only 10 GICS sectors were used during the study period15.

7.2.1. Average Payback Periods by Type and Sector We want to validate whether the

average payback periods by type are consistent across different industries. The results in Table

13 show transportation, materials, and behavioral changes are three types that have the shortest

payback period for all sectors except for Information Technology and Utilities. There are varia-

tions within the top three types of opportunities by sector, but our overall recommendation that

transportation has the shortest payback period is consistent across six out of the ten industries.

Renewable energy has the longest payback period in eight out of the ten sectors. In sum, the

shortest and longest payback period remain relatively consistent by sector.

15 In 2016, the Real Estate sector was moved out the Financials sector and became its own sector.
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Table 13 Average payback period by type and sector.

Type
Consumer

Discre-
tionary

Consumer
Staples

Energy Financials
Health
Care

Transportation 2.17 1.75 2.08 2.98 1.27
Materials 1.64 2.09 2.68 2.21 2.81
Behavioral changes 1.23 2.17 2.61 1.84 2.67
Industrial process 2.91 3.13 2.99 3.86 3.41
Buildings 2.89 3.47 3.74 3.78 3.44
Renewable energy 3.04 3.51 4.78 3.26 3.92

Industrial
Info.

Technology
Materials

Telecom.
Services

Utilities

Transportation 1.97 2.06 1.42 2.44 3.38
Materials 2.14 1.67 1.96 2.73 3.17
Behavioral changes 2.18 2.18 1.57 3.08 4.03
Industrial process 3.05 2.18 2.03 3.45 3.49
Buildings 3.36 2.58 3.03 2.95 2.87
Renewable energy 3.48 1.87 3.06 4.19 6.16

7.2.2. Median Investment Costs by Type and Sector We check whether our findings on

median investment costs by type are consistent across sectors. Table ?? in the Online Companion

summarize the median investment costs by type in each sector. We find that types we labeled

transportation have the lowest cost in six out of the ten sectors and buildings has the lowest cost

in three sectors. This is consistent with our earlier findings that buildings and transportation are

the two types with the lowest cost. Renewable energy has the highest cost in eight out of the ten

sectors; it is only the second highest cost in the telecommunication services and financial sector.

The types with the lowest and highest median cost remain relatively consistent across sectors.

7.2.3. Median Carbon Emissions Reduction by Type and Sector We examine the

variation of the median carbon emissions reduction by type in each sector. In the main findings,

we concluded that the types we labeled as buildings have the lowest carbon abatement potential.

Table ?? in the Online Companion confirms that this type has the lowest median carbon emissions

reduction in eight out of the ten sectors. The results remain roughly consistent across sectors with

the exception of Telecommunication services and Utilities. Opportunities labeled renewable energy

have the highest carbon abatement potential; this finding is consistent across all except for one

sector. Overall, the findings suggest that classifications can be generalizable across sectors.

8. Limitations and Final Remarks

We discovered six latent types of carbon abatement opportunities based on 16,525 projects reported

by 1,305 firms from 2011-2016. We examined four financial and environmental metrics often used

to compare and prioritize carbon abatement projects. We found statistically significant differences

in the average payback period, (natural log of) investment costs, annual savings, and emissions
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reduction potential by type. We found that no single type is superior in every financial and envi-

ronmental metric we examined. These finding have several implications.

We contribute to the broader discussion on energy efficiency by examining which types of oppor-

tunities have large upfront costs, long payback periods, or small carbon emissions reduction poten-

tial. The projects we examine have been implemented, therefore firms are able to provide actual

cost and savings figures as opposed to projected values. The rankings by each type across the

four metrics we examine are summarized in Table 14. This provides insights on the actual carbon

reduction experience of firms and how the different types of opportunities differ.

Table 14 Summary of rankings by metric.

Payback period Costs
Carbon emissions

reduction
Savings

(shortest to longest) (lowest to highest) (highest to lowest) (highest to lowest)

Transportation Buildings Renewable energy Renewable energy

Materials Transportation Materials Transportation

Behavioral changes Behavioral changes Behavioral changes Materials

Industrial processes Materials Transportation Behavioral changes

Buildings Industrial processes Industrial processes Industrial processes

Renewable energy Renewable energy Buildings Buildings

The results can be used to assist firms in determining which types of opportunities to pursue

first depending on their goals. For example, the mean emissions reduction from transportation

and behavioral changes are, on average, similar but the mean costs are (statistically) different;

therefore, firms should pursue transportation-related types of opportunities first based on these

two metrics. We find that materials and buildings, on average, have the same investment cost but

materials have shorter payback periods on average. Our results can be used to identify which types

of opportunities should be pursued first depending on the attributes that matter most to the firm.

The diversity in the implemented projects suggests that no single metric drives carbon abatement

investment decisions. Some firms pursue opportunities with low upfront costs even though they

also have the lowest annual savings. In contrast, we also see a lot of projects with very high upfront

costs (i.e., renewable energy and industrial processes), yet many firms continue to implement them.

This is easy to understand for renewable energy, as these projects generally provide the highest

overall savings and carbon emissions. However, industrial processes projects provide much weaker

results, meaning companies may be better served allocating their investments to other types. The

type of opportunity with the shortest payback period, transportation, is not necessarily the type

that is most widely reported. This implies that firms may not necessarily weigh these attributes

(costs, savings, payback period, etc.) equally. The commonly used metrics for making adoption

decisions are not necessarily flat across firms.



Blanco: A classification of carbon abatement opportunities
28 MSOM-21-179.R2

Most studies in carbon abatement do not consider whether firm-level characteristics and their

link with adoption decisions may vary depending on the type of the opportunity. The results

show that a higher cash-to-asset ratio is negatively associated with the number of transportation,

materials, behavioral changes, and industrial processes projects. This means that firms with higher

liquidity are not necessarily more willing to implement these types of carbon abatement projects.

However, we do find that cash-to-asset ratios are positively associated with renewable energy. We

find no evidence that liquidity is linked to the number of projects we labeled buildings. Our findings

show that liquidity is linked to adoption decisions albeit the direction and magnitude varies by

type.

Our findings have policy insights. We identified that certain types of firms (low vs high liquidity

firms) are more likely to pursue certain types of opportunities (as suggested in Table 11). Policies

designed to make savings more attractive (e.g., a carbon tax) may not necessarily encourage all

firms in the same way; some firms place more preference on lower upfront costs rather than higher

savings. Similarly, policies targeted at making investment costs more attractive (e.g., subsidies or

better financing) may not have the same impact on firms that put more weight on savings compared

to those more sensitive to costs.

There are limitations to our paper. It is natural to ask whether we can calculate the weights for

individual firms to understand the distribution of these weights. Although we presented numerical

illustrations on what the order of preferences are for a given set of weights, unfortunately, we

cannot recover firm-level weights with the current data. This is because we do not observe the

values of the opportunities that firms do not pursue. Instead, we leverage the strength of the data

where firms are likely to report their most profitable or attractive opportunities. Using this rich

data, we were able to observe that there is wide variation in the payback period, costs, savings,

and carbon emissions reduction even among the most profitable carbon abatement projects.

Prior research have mostly focused on firm-level characteristics to explain adoption or only

examine one type of opportunity. Instead of exploring why opportunities do and do not get adopted,

we examine the set of carbon abatement projects firms implement over a six-year window. Future

research can examine other opportunity-specific characteristics of carbon abatement activities such

as flexibility, duration, indirect benefits, and uncertainty in outcomes.
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