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Abstract

This paper studies the dynamic behavior and determinants of risk premia on

real bonds, using GDTSMs. We find that the real term structure itself contains a

component that drives risk premia but is undetectable from cross section of bond

yields. In addition, we present evidence on the link between real bond premia and

macroeconomic variables. More specifically, we find that macro factors associated

with real estate and consumer income and expenditure can capture a large portion

of forecastable variation in excess returns on real bonds.
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1 Introduction

Many studies have examined the behavior and potential economic determinants of risk pre-

mia on nominal Treasury bonds. One stylized fact documented in this literature is that excess

returns on nominal bonds are predictable (Fama and Bliss, 1987; Campbell and Shiller, 1991;

Cochrane and Piazzesi, 2005), which invalidates the expectations hypothesis that bond risk

premia are constant. Another stylized fact is that some factors found to have predictive

power are not spanned by the current term structure of interest rates. These factors are

uncovered and labeled as “hidden factors” by Duffee (2011), as they are hidden from cross-

sectional yields despite their nontrivial effect on yield dynamics. On the other hand, the

literature on risk premia of real bonds is rather thin, even though they represent a major

asset class that can significantly expand one’s investment opportunities (Campbell, Shiller,

and Viceira, 2009; Bekaert and Wang, 2010).1 In particular, while a few studies have docu-

mented the failure of expectations hypothesis in the real bond market (Evans, 1998; Pflueger

and Viceira, 2011), evidence on the presence of hidden factors is still missing.

In this paper, we shed light on this important issue, arguing that the use of smoothed

yields on zero-coupon inflation-indexed bonds in the literature is the main reason for this

problem. In the TIPS market, the dominant source of zero-coupon yields used in academic

studies is a panel produced by Gürkaynak, Sack, and Wright (2010),2 who fit Svensson

(1995)’s smooth function to the term structure. We find that although they are very useful

in many aspects, such constructed smoothed real yield curves make the hidden component

in term premia hard to detect. In contrast, based on a new set of zero-coupon real yields

constructed using Fama and Bliss (1987)’s bootstrap method, we show that hidden factors

play a key role in the dynamics of real short rates and excess bond returns.

More specifically, we estimate a four-factor Gaussian term structure model using Fama-

Bliss type of unsmoothed real yields from 2004 through 2014. The Kalman filter allows us to

infer the hidden component in risk premia. Based on the model’s point estimates, about 40%

of variations in expected monthly excess returns are attributable to this hidden component.

1For instance, TIPS can provide notable diversification benefits for investors (see, e.g., Campbell, Shiller,
and Viceira, 2009; Huang and Zhong, 2013).

2Extant studies based on this dataset include, but are not limited to, DAmico et al. (2012), Grishchenko
and Huang (2013), Pflueger and Viceira (2010, 2011), Christensen et al. (2010).
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A one-standard-deviation change in this hidden factor raises the expected monthly return

to a ten-year bond by 30 basis points (bps). In contrast, if the same model is fitted with

smooth yields, information in the yield curve accounts for about 90% of variations in term

premia, leaving little room for the hidden factor.

This finding highlights the differences between the unsmoothed and smoothed yield data

in the inference of term-premium factors, which have been pointed out by Dai et al. (2004),

Cochrane and Piazzesi (2008), and Le and Singleton (2013). In particular, an early version

of Duffee (2011) suggests that “the smoothing process can artificially erase” a hidden factor,

such as the fifth principal component (PC) of nominal yields that he demonstrates to have

substantial forecasting power. However, to the best of our knowledge this paper is the first

to formally assess the veracity of this conjecture. Our results show that, by retaining the

information in hidden factors, the Fama-Bliss yield curve implies much more predictability

in excess returns than do smoothed yield curves.

We document that return predictability implied by the estimated model differs sharply

from that suggested by the sample. For example, the model’s population properties imply

that about 17% of the annual excess return on a five-year real bonds are forecastable by

filtered state factors, but the R2 in the sample ranges from 25% to 32%. For annual excess

returns, we find that this divergence is driven by both the (model-suggested) small-sample

bias and sampling error,3 as the finite-sample R2s produced by the model lie in between.

However, this discrepancy does not affect our conclusion that information other that in the

cross section of yields is very useful in forming return forecasts. Indeed, the sample R2s for

predictive regressions of annual returns would improve by 5 ∼ 20%, depending on the bond

maturity, if the filtered state vector replaces the yield curve PCs as the predictors.

Our model also implies that a substantial fraction of long-run risk premia on real bonds

are orthogonal to the short-run premia. While Duffee (2010) has presented similar evidence

with respect to nominal bonds, our results for the first time distinguish between the hidden

components of monthly and annual expected excess returns, and more importantly, link

3In a recent study, Bauer and Rudebusch (2015) also find that both issues contribute to regression-based
evidence for risk premium factors unspanned by the yield curve. Our main results on hidden factors in the real
bond market are not derived from regression analysis. Moreover, while their study focuses on regressions of
annual bond returns, we also present results on hidden factors in monthly excess returns, which show a much
lower degree of persistence than annual returns and therefore are less subject to small-sample distortions.
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them to different macroeconomic sectors. Specifically, we find that the “monthly” hidden

factor shows significant covariation with general measures of real activity, and that a housing

market indicator explains a substantial fraction of variation in the “annual” hidden factor.

The clear economic interpretation of our hidden factors disentangles themselves from hid-

den factors extracted from the nominal Treasury market, which are shown to have limited

correlation with standard economic variables considered in the macro-finance literature (Duf-

fee, 2011; Chernov and Mueller, 2012).4 Owing to the lack of priori information on what

macroeconomic variables are important to modeling term premia on real bonds, we do not

incorporate macro data in our inference of yield-unspanned predictability as Joslin, Priebsch,

and Singleton (2014). Nonetheless, our findings provide helpful guidance for future works

on macro-finance models of real term structure.

Our analysis by no means indicates that parametric models underperform the Fama-Bliss

method in estimating the term structure. Rather, we show that the Fama-Bliss and Svensson

yield curves deliver comparable performance in pricing individual TIPS out of sample. As

discussed in Gürkaynak et al. (2007, 2010), the choice about yield-curve estimation method

depends on the purpose that the curve is intended to serve. While a smoothed yield curve

may lose the information in higher-order principal components and is thus less attractive to

practitioners, it could be very useful in macroeconomic interpretation and policy analysis.

The organization of the paper is as follows: The next sections set out the Fama-Bliss

method of yield curve estimation and compares its out-of-sample goodness-of-fit with that

of the Svensson method. Section 3 presents the term structure model and summarizes

properties of the estimated model. In Section 4 we link the extracted hidden factors to

expectations of future real rates and to macroeconomic variables. Section 5 concludes.

4Chernov and Mueller (2012) uncover a hidden factor whose presence is detected only if survey forecasts
of inflation are included in the model estimation. But they find that this factor cannot be linked to any
macro factors considered in their analysis.
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2 Data

2.1 Data on TIPS and Real Yields

Information on historical TIPS issuance, including issuance dates, maturity dates and coupon

rates, is obtained from TreasuryDirect. For each TIPS issue, we retrieve month-end price

quotes from Thomson Reuters. The averages of bid and ask quotes are used as the true

price. We exclude issues with less than six months to maturity duo to their low liquidity.

Given the liquidity problems in the early years of TIPS program, our sample period extends

from January 2004 to December 2014.5 As such, there are 13 TIPS bonds and 39 TIPS notes

contained in our sample.

The TIPS zero yield data most widely used in the literature is provided by Gürkaynak,

Sack and Wright (2010, GSW hereafter), who estimate the Svensson (1995) parametric zero-

curve model, an extension of Nelson and Siegel (1987). The resulting zero curve brings several

desirable characteristics for monetary policy analysis: the smoothness and asymptotical flat-

ness. However, the smoothness is attained by “evening out” the idiosyncratic movements

in individual yields. As demonstrated in Section 3, it is difficult to distinguish shocks to

higher-order principal components of the yield curve from idiosyncratic yield shocks. Con-

sequently, if those higher-order factors contain non-trivial information on expected excess

returns, the smoothed yield curve could lose this information. As such, the GSW data may

not be suitable for this study given our purpose of forecasting bond excess returns. Below

we construct TIPS zero curves using the non-parametric Fama-Bliss method.

2.1.1 Construction of the Fama-Bliss Real Yield Curve

Table 1 presents the term structures of means and volatilities of zero yields constructed using

the Fama-Bliss (columns 1 and 2) and Svensson (columns 3 and 4) methods. For comparison,

we also report summary statistics of the yield curve estimated by GSW6 (columns 5 and 6),

who utilize the price data provided by Barclays Capital Markets. Note that in our estimates

5See, e.g., Roll (2004); Shen (2006); D’Amico, Kim, and Wei (2014). In particular, Shen (2006) finds that
before 2004 liquidity risk premia in TIPS were too large to be ignored.

6Their zero yield data is available through http://www.federalreserve.gov/econresdata/researchdata/feds
200805.xls.
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of both Fama-Bliss and Svensson yield curves, the one-year yield is available over a shorter

sample, which starts from January 2006, while GSW’s zero yields do not include maturities

below two years.

Columns 1 through 4 indicate that the Fama-Bliss and Svensson methods, implemented

using the same underlying quotes, produce subtle difference in the mean term structure. For

maturities of one through eight years, the difference is no more than 1.8 bps. However, the

Fama-Bliss curve tends to diverge from the Svensson one at the long end owing to its higher

degree of flexibility. On the other hand, the Svensson and GSW yield curves used in Table 1

are constructed using the same method but different data. Columns 3 through 6 in the table

indicate that different underlying data sources do not lead to any substantial discrepancy in

the first two moments of the yield curves.

It is worth noting from the table that regardless of the underlying data and the estimation

method used, all three yield curves show the same pattern across maturities: the average term

structure of TIPS yields is upward-sloping and slightly concave,7 while the term structure

of yield volatilities is downward-sloping. These features are generally consistent with the

evidence documented in Ang et al. (2008) and D’Amico et al. (2014), both of which estimate

the dynamics of real rates using data on observed inflation and nominal yields (as well as

their survey forecasts in the latter study).

2.1.2 From TIPS Yields to Real Yields

If TIPS are perfectly indexed, the estimated yield curves can be used to represent the term

structure of real interest rates. However, in practice TIPS coupon and principal payments are

linked to the three-month lagged inflation index, rather than the current level of the index.

We correct for this indexation lag to obtain real yields that will be used in the empirical

analysis of real risk premia. See Appendix A.1 for the details of the method used to estimate

the correction due to the indexation lag.

The implementation of this estimation method requires data on both the nominal yields

and TIPS yields. For the latter, we use the Fama-Bliss TIPS zero yields with maturities of

one through ten years constructed in Section 2.1.1. To be consistent, we need to use nominal

7Note that in Table 1 statistics for the one-year bond are based on a shorter sample. The mean term
structure is monotonically deceasing if the average for other maturities is taken over the same sample period.
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yields constructed using the same method. However, Fama-Bliss nominal (zero) yields are

available for maturities up to five years only. As such, we need to extend the Fama-Bliss

nominal data to longer maturities. Following Le and Singleton (2013), we construct a set

of monthly Fama-Bliss nominal zero yields with maturities of six through ten years over

our sample period, using data on the quotes of individual Treasury coupon bonds from the

CRSP Monthly Treasury Master File.

The last two columns of Table 1 present summary statistics of real zero yields estimated

using the Fama-Bliss nominal and TIPS zero yields. Comparing with the summary statistics

of Fama-Bliss TIPS yields shown in columns 3 and 4, we see that on average the real yield

curve is below the TIPS curve as expected but the effect of the three-month indexation lag

on the zero curve is small in our sample, especially for long-term zero yields. Untabulated

results indicate the magnitude of our estimates of indexation-lag effect is generally in line

with the results obtained in other studies (e.g., Grishchenko and Huang 2013).

Figure 1 plots estimated real, TIPS, and nominal yields for ten-year zero-coupon bonds

over the period 2004–2014. Consistent with Table 1, the 10-year TIPS and real yields behave

similarly in our sample. Although there is a notable difference between the two yields during

the financial crisis period, the magnitude of the difference is generally small. Also, the

long-term real interest rate seems highly correlated with the long-term nominate rate in the

pre-crisis and the post-crisis periods.

2.2 Survey Data

One important part of our empirical analysis is to provide economic interpretations of ex-

tracted hidden factors. Section 4.3 examines whether these factors capture investor’s expec-

tations by comparing the hidden factors to survey forecasts of future real rates. We construct

quarterly forecasts of the three-month real rate at various horizons using survey data from

Blue Chip Financial Forecasts.

The Blue Chip conducts monthly surveys that ask approximately 45 financial market

professionals for their projections of a set of economic fundamentals covering real, nominal

and monetary variables. However, these variables do not include real yields but do cover

nominal bond yields only. In order to estimate implied forecasts of real yields, we do the
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following: First, in quarter i we extract every analyst’ forecasts of the three-month nominal

yield realized at the end of quarter i, as well as the three-month inflation rate realized at

the end of quarter i + 1. Then, we calculate each analyst’s expectation of the three-month

real rate (prevailing quarter i+ 1) by assuming a zero inflation premium at the three-month

horizon.8

Note that the Blue Chip forecasts are made for a specific calender quarter and thus the

forecast horizon varies each month. For example, the 3-month ahead forecast is only observed

every third month in January, April, July and October, whereas the 1-month ahead forecast is

only observed in March, June, September and December. As a result, we construct quarterly

forecast of the three-month real rate at horizons ranging from one to twelve months.

Let y3t denote the three-month real rate at time (month) t, and Êt(∆y
3
t+j) the mean

survey forecast of the three-month real rate estimated at month t, where j = 1, . . . , 12.9

As these estimates are persistent, we focus on expected changes in real yields in regressions

of real rate forecasts on hidden factors in Section 4.3. The expected change is defined as

follows:

Êt(∆y
3
t+j) = Êt(y

3
t+j)− ŷ3t . (1)

where ŷ3t is the time-t estimate of y3t .

How to estimate short-term real yields such as ŷ3t ? Note that neither three-month real

T-bills nor equivalent short-term instruments have been issued in the market. Also, short-

term real yields are hard to be effectively estimated from near-term TIPS because the effect

of the indexation lag makes the prices of these securities erratic. We follow Campbell and

Shiller (1996) and obtain a hypothetical real yield series by estimating a VAR model with

monthly U.S. data, as elaborated in Appendix A.2.

8The assumption of a zero inflation risk premium at short horizons is also adopted in, e.g. Ang et al.
(2008).

9Each month’s report is released at the beginning of the month, thus the month-t forecasts of Treasury
yields and inflation rates are achieved from month-(t+ 1)’s report.
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3 Dynamic Term Structure Models with Real Yields

By definition, hidden factors are difficult to extract via a principal component analysis

of yield curves; however, their presence can be inferred through the application of some

filtering techniques. In this section we present empirical evidence of hidden factors in the

real bond market, obtained by first constructing term structure models with real rates and

then estimating the models via filtering with unsmoothed zero yields. We also show that the

same filtering technique with the same term structure models fails to reveal the the presence

of hidden factors when smoothed yield data are used instead.

To obtain maximum flexibility in the risk-premium specification, we rely on a four-factor

Gaussian dynamic term structure model (GDTSM) to draw inferences about hidden factors.

The choice of model dimension is based on three considerations. First, we find that the

first two principal components can explain 99% of the cross-sectional variance of real zero-

coupon yields in our sample, consistent with Gürkaynak, Sack, and Wright (2010) who use

their estimated zero-curves of TIPS. Second, we follow Duffee (2011) by adding two more

dimensions into a DTSM including only pricing factors. The resulting four-factor model gives

hidden factor(s) a reasonable opportunity to manifest themselves. Finally, a model with five

or more factor contains at least 29 free parameters, even with the restrictions imposed in

Section 3.2. Extracting information about each of these parameters could be beyond the

limits placed by our 11-year data sample.

3.1 The Modeling Framework

We begin with the canonical representation of GDTSMs developed by Joslin, Singleton, and

Zhu (2011; JSZ hereafter), which defines the most general admissible GDTSM for a given

dimension of the state vector. JSZ show that any canonical GDTSM can be transformed to

a unique GDTSM parameterized by ΘX , a parameter set to be specified below.

Let r denote the short rate and X the state vector of length N whose dynamics follow a

Gaussian process under both the physical measure P and the risk-neutral measure Q. The
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discrete-time Q-dynamics of Xt and the resulting bond pricing formula are given as follows:

rt = ı ·Xt, (2)

∆Xt = µQ
X +KQ

XXt−1 + ΣXε
Q
t , (3)

ymt = Am(ΘQ
X) +Bm(ΘQ

X)′Xt (4)

where ı is a vector of ones; µQ
X = [uQ∞ 01×(N−1)]

′, with uQ∞ determining the long-run mean

of short rate; KQ
X has the real Jordan form determined by the eigenvalue vector γQ; ΣX is

lower triangular and εQt ∼ N(0, IN). In addition, ymt is the time-t yield of a zero-coupon

bond maturing at m; ΘQ
X = (γQ, uQ∞,ΣX), a subset of ΘX , governs X ′ts Q-dynamics and thus

fully determines bond pricing; coefficients Am and Bm satisfy a form of what is known as a

Riccati equation.

Given the latent nature of the state vector X, we can obtain equivalent Gaussian models

using invariant affine transformations. As we aim to identify sources of risk compensation

and, in particular, to infer the hidden component of real bond risk premia, we consider a

factor rotation that leads to orthogonal factor shocks instead of orthogonal factors. More

specifically, we construct a rotation matrix using the principal component (PC) decomposi-

tion of yield innovations rather than that of yield levels.

Denote such a rotation matrix by L and the resulting new state vector by P . Let Yt be

stacked time-t yields on k zero-coupon bonds with maturitiesM = {m1, . . . ,mk} as follows:

Yt = Ax + BxXt, (5)

where the k ×N matrix Bx contains rows {B′m|m ∈M} for each bond.

It follows from Duffee (2011) that:

L = W ′Bx(ΘQ
X), (6)

Pt ≡ L
(
Xt + (KQ

X)−1µQ
X

)
, (7)
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where rows of the columns of W are eigenvectors of the covariance matrix of shocks to Yt

and thus L diagonalizes the covariance matrix ΣXΣ′X such that ΩP ≡ LΣXΣ′XL
′ contains

the corresponding eigenvalues. As a result, the Q-dynamics of Pt are given by

∆Pt = KQ
PPt−1 + Ω

1/2
P εQt , (8)

KQ
P = LKQ

XL
−1, (9)

where importantly, innovations among new state factors become independent of each other.

In other words, each new factor has risk exposure to its shocks only. For instance, the con-

structed “level” factor has risk exposure to “level” shocks only. In addition to uncorrelated

PC risks, another advantage of rotation L is that it depends solely on ΘQ
X . As emphasized in

Duffee (2011), this irrelevance of physical measure dynamics simplifies the model estimation.

Under the physical measure P, the rotated state vector P has the following dynamics:

∆Pt = µP
P +KP

PPt−1 + Ω
1/2
P εPt , (10)

µP
P = L

(
µP
X −KP

X(KQ
X)−1µQ

X

)
, (11)

KP
P = LKP

XL
−1. (12)

where µP
X and KP

X are the P-counterparts of µQ
X and KQ

X , respectively.

3.2 The Structure of Expected Excess Returns

If there are bond portfolios on which excess returns track the priced risks Pt, their one-period

risk premia equal the drift of Pt under P minus its drift under Q. That is

Ω
1/2
P Λt = µP + (KP

P −K
Q
P )Pt = λ0 + λ1Pt, (13)

where the first two elements of Λt represent the market price of “level” risk and that of

“slope” risk, respectively.

An important question here is what restrictions should be placed on λ0 and λ1. Specifi-

cally, econometricians focus on the following two question on term premia specification: (1)
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which of the PC risks are priced? (2) what is the dimension of “risk-premium factors” that

drive expected excess returns? While several studies have looked into these questions in

nominal bonds (see, e.g., Cochrane and Piazzesi 2005, 2008; Duffee 2010; Joslin, Priebsch,

and Singleton 2014), evidence from the real bond market is scarce and variations in real

risk premia are often assumed to be driven by a three- or four-dimensional state vector in

the literature (see, e.g., Chernov and Mueller 2012; D’Amico et al. 2014; Haubrich et al.

2012). In this subsection, we conduct an extensive analysis in order to shed more light on

these important issues. Below we summarize the main results from the analysis and leave

the details of the analysis to Appendix B.

To address the first question above, we follow Duffee (2010) to focus on specifications that

lead to a reasonable magnitude of model-implied Sharpe ratios. Using a four-factor GDTSM

for real bonds, we find evidence that while investors generally demand compensation for

exposure to both the risk of “level” shocks and that of “slope” shocks, the market prices of

the third- and fourth-PC risks are fairly small in magnitude. As such, it seems reasonable

to set the last two rows of λ0 and λ1 to zero.

Regarding the number of factors that drive expected excess returns (the second aforemen-

tioned question), we conduct first a principal component analysis of model-implied expected

returns. This approach share the same spirit as Cochrane and Piazzesi (2008), with the

differences that (1) we estimate expected excess returns using an (unconstrained) GDTSM

instead of a return-forecasting regression and (2) we consider not only annual returns but

also monthly returns. We find that the covariance matrix of annual returns is dominated by

the first PC, which captures 98.5% of the variance. On the other hand, for monthly excess

returns, the first PC explains about 95.7% of their variations and the second PC accounts

for almost all the remaining variance.10 These results suggest that variations in monthly

(yearly) excess returns are largely driven by two factors (one factor).

Next, we conduct a rigourous test in the case of monthly excess returns. Specifically,

following Joslin et al. (2011) we perform a likelihood-ratio test with the null hypotheses that

10This result may have something to do with the use of one-month yield in the construction of monthly
excess returns. As inflation-indexed bills are never issued, no information about the short end of real term
structure is available in our model estimation. As such, the filtered, noise-free one-month real yield depends
on both the model and the information of longer-maturity bonds, and thus may differ from the “true” real
short rate.
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the rank of λ1 is one. Test results indicate that we cannot reject the null that monthly

expected excess returns are driven by a single linear combination of pricing factors at the

conventional 5% significance level. This result along with our earlier finding that only the

level and slope are priced factors suggests the following functional form for risk premia,

where a single factor λ′1lPt drives expected excess returns:

Ω
1/2
P Λt =


λ0l

λ0s

02×1

+


λ′1l

03×4

Pt, (14)

where λ1l is a vector of length 4. One important advantage of this functional form is that

we can easily identify the hidden component of the single risk-premium factor λ′1lPt.

In the analysis that follows, we consider mainly the configuration (14) but also report

the results from the unconstrained model when necessary.

3.3 Model Estimation

When estimating an N -factor term structure model, econometricians often assume that N

zero-coupon bond yields or N linear combinations of such yields are priced perfectly by the

model. Unfortunately, this assumption is not suitable for the purpose of detecting hidden

factors because with such factors, the length-N state vector cannot be inferred solely from

properties of the cross-section of yields. For instance, if Xt in Eq. (5) contains hidden factors,

Bx has a rank less than N . However, as noted in Duffee (2011), the presence of hidden factors

can be inferred using filtering techniques. Furthermore, if the underlying model fits into the

Gaussian term structure framework, the Kalman filter can produce correct conditional mean

and covariance parameters.

As such, we assume that all zero yields are measured with error as the following:

Ỹt = Ap + BpPt + ηt, (15)
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where Ỹt denotes noise-contaminated yields; Bp their loadings on the rotated factors Pt; the

noise ηt is assumed to be independent across maturities and all yields share an identical

standard deviation σ2
η.

With the principal components rotation, there are 32 non-zero parameters in the con-

strained four-factor model,

ψP = (ΦQ
P ,ΩP , δ0P , δ1P , λ0l, λ0s, λ1l, ση),

where ΦQ
P = KQ

P + I. However, not all risk-neutral parameters are identifiable under this

factor rotation. According to the JSZ canonical form, there are only 22 free parameters after

the 14 zero restrictions are imposed on the risk premium dynamics

ΘX = (γQ, uQ∞,ΣX , λ0l, λ0s, λ1l, ση).

Given the transition equation (10) and the observation equation (15), it is straightforward

to implement the Kalman filter and perform the maximum likelihood estimation. All models

are estimated using a monthly panel of all ten constructed zero yields on real bonds. One-year

bond yields are not available for all dates, which introduces missing data in the observation

equation and are handled in the standard way by allowing the dimensions of the matrices

Ap and Bp in Eq. (15) to be time-dependent.

To facilitate our following discussion, we report the estimate of ψP rather than ΘX in

Table 2, where standard errors from Monte Carlo simulations are in parentheses. The esti-

mate of ΩP indicates that the first two principal components explain 99.4% of conditional

variations in the term structure, consistent with a principal component analysis of the un-

conditional covariance matrix of bond yields.

To illustrate the mapping from the PCs to observed real yields, Figure 2 plots model-

implied yield loadings (solid lines) on each of the four factor in four separate panels. The

top two panels show that the first two factors play a noticeable role in the term structure.

For example, a one-standard-deviation increase in the “level” factor (the first factor) raises

the two-year yield by about 17 bps (the top left panel), a significant impact given that the

sample mean of two-year yields is merely 1.3 bps. Note that the first factor here, P1t, does
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not move all yields together by approximately the same amount because, by construction,

P1t is the “level” component for innovations to bond yields, not the conventional “level”

factor extracted from the unconditional covariance matrix of yields.11 In contrast, the yield

curve’s responses to one-standard-deviation shocks to the third and fourth factors are less

than 3 bps regardless of maturities. This result should not be taken for granted as the state

factors are PCs of yield innovations instead of yield levels. This also explains why the yield

loading on the third factor P3t does not have the familiar hump shape (the bottom left

panel).

Any credible term structure model should produce principal components that match prin-

cipal components in the data. Along with the model-implied loadings in (15), corresponding

sample values are also displayed as triangle markers in each panel. They are estimated by

regressing yields on the filtered factors. One key observation from the figure is that the

model does a good job reproducing the sample loading on each factor. All sample loadings,

except the one-year yield’s on the third factor, are within two-sided 95% confidence bounds

calculated from Monte Carlo simulations.12 Moreover, the distance between the upper and

lower bounds is economically small, no more than 5 bps in any panel. Overall, we find that

the fitted loadings closely resemble the actual loadings at least for those maturities involved

in model estimation.

The main conclusion drawn from Figure 2 is that only the “level” and “slope” factors

make noticeable contributions to the cross section of real yields. Due to the small contribu-

tion of the higher-order factors (the 3rd and 4th ones), it might be difficult to disentangle

them from noise in the real yield curve. Note that the estimated standard deviation of

measurement error is about 1.51 bps, which is enough to obscure their effects on the term

structure. As such, one may expect that these two factors do no play an important role in

determining term premia on real bonds, given the conventional wisdom that the current term

structure should contain any information investors have about future excess returns. How-

ever, results in the next subsection show that these higher-order factors capture a substantial

portion of forecastable variations in excess bond returns.

11The (untabulated) estimate of W , defined in Eq. (6), confirms that P1t’s effect on yield shocks are much
more uniform across maturities.

12Since the sample of the one-year yield is shorter than other maturities, it generally has the largest
divergence between model-implied and sample loadings.
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3.4 Population Properties of Expected Excess Returns

This subsection examines expected excess returns implied from the four-factor term-structure

model estimated in Section 3.3.

Table 3 reports the main features of excess returns to a five-year bond (Panel A) and a

10-year bond (Panel B), based on both monthly returns (columns 2 through 6) and annual

returns (columns 7 through 11). These two bonds are chosen because a five-year (10-year)

bond is considered to be a long bond in studies of nominal (real) bond risk premia. However,

as risk premia are driven by a single factor in the model, the (untabulated) results for other

maturities are similar.

Consider the five-year bond first (Panel A). Note that the unconditional mean of monthly

excess return is 9 bps (column 2) or 1.07% annualized and, as expected, higher than the mean

annual excess return of 0.94% (column 7), due to the sightly convex upward real yield curve.

However, there is substantial statistical uncertainty in these point estimates as can be seen

from their 95% confidence intervals shown in columns 2 and 8 (based on the same 1,000

simulations used in Table 2). For instance, the mean of monthly excess returns ranges from

-6.7 to 29 bps, implying a nontrivial probability that the ML estimation with 132 monthly

observations produces a negative point estimate. The unconditional variance of returns

(uncontaminated by measurement errors) is 10.6 bps for monthly excess returns (column 3)

and 73.2 bps for annual ones (column 8), suggesting that the realized excess return is highly

volatile.

The variation in the predicted excess returns—the variable of interest here—depends on

the information set used in return prediction. Under the assumption that econometricians

perfectly observe the current state factors, the predictable variance for the monthly returns

is 1.73 bps (column 4), accounting for 16% of the total return variance of 10.6 bps (column

3), and as expected, the annual return is more predictable, with a model-implied R2 of about

23% (16.9/73.2). In reality, econometricians are unlikely to have access to this information

(unless they conduct surveys on investors’ expectation) and instead, either reply on the

current term structure or perform filtering analysis to infer the state vector. We consider

the former approach below and the latter in Section 3.5.
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Without loss of generality, the time-t yield curve information used to calculate the ex-

pected excess return Et(rx
m
t+j) is assumed to be summarized by the first four PCs of the

zero curve with noise.13 Let P̃ denote the vector of these four PCs. By the law of iterated

conditioning, forecasting returns with P̃ boils down to an inference of the true state vector

P based on P̃ . For example, in the case of monthly returns we have

E(rxmt+1|P̃t) = E(E(rxmt+1|Pt)|P̃t) = α1
m + β1

mE(Pt|P̃t), (16a)

α1
m = −(m− 1)B′P,m−1λ0 −

1

2
(m− 1)2B′P,m−1ΩPBP,m−1, (16b)

β1
m = −(m− 1)B′P,m−1λ1. (16c)

With partial information about P econometricians tend to make less accurate forecasts

than E(rxmt+j|Pt). Indeed, as indicated by columns 5 and 10 of Table 3, the P̃t-based re-

turn prediction yields an R2 of 9.43% (1.0/10.6) for monthly returns and that of 13.95%

(10.2/73.2) for annual returns. As such, the spread between Pt-based (full-information) R2

and P̃t-based (partial-information) R2 is 6.57% (=16-9.43) for monthly returns and 9.05%

(=23-13.95) for annual returns. This spread between Pt- and P̃t-based R2s can be traced

back to measurement errors introduced in Eq. (15). While these errors hardly affect the

first two PCs due to their dominant role in the cross section, measurement errors make it

difficult to extract the true 3rd and 4th PCs (P3t and P4t) from the observed term structure.

If these higher-order factors contain substantial information about future bond returns, then

it is missing in P̃3t and P̃4t and thus in P̃t. Indeed, replacing P̃t with [P̃1t P̃2t]
′ makes little

difference in the variance of return forecasts.14

Another way to measure the gap between the information contained in Pt and that in P̃t
is to calculate the ratio of variances of these two forecasts, denoted VRP̃ , as suggested by

13Alternatively, we can use four bond yields themselves as a proxy for state variables. Untabulated results
indicate that using 2-, 5-, 7- and 10-year yields leads to spanning ratios even lower than those reported in
Table 3.

14As implied in Figure 2, different factor rotation schemes do not significantly alter the information content
in the first two factors. We confirm this by analysing the expected excess returns conditioning on [P1t P2t].

The resulting variance is comparable to V ar(rxmt+j |[P̃1t P̃2t]).
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Duffee (2011). In the case of monthly excess returns, the ratio equals

VRP̃ =
β1
mVar(Pt|P̃t)β1′

m

β1
mVar(Pt)β1′

m

. (17)

Given the restrictions imposed on λ1, it follows from Eq. (16c) that β1
m is essentially deter-

mined by the product of the first element in BP,m−1 and λ1l. Hence, VRP̃ is close to one if

the last two elements in λ1l (corresponding to the third and fourth factors) are zeros. This

leads to the special case in which higher-order factors do not affect the risk compensation for

the “level” factor (see Eq. (14)). Put differently, when variations in term premia are driven

by only the first two factors, econometricians have pretty much the same information set as

possessed by market participants.

The point estimate of VRP̃ , reported in Panel A of Table 3, is 59.1% for monthly returns

(column 6) and 60.5% for annual returns (column 11). In other words, 40% of the information

in the true state vector is lost if we rely on cross-sectional yields to forecast excess returns.

Even if we focus on the upper bound of V̂RP̃ ’s confidence intervals reported in the table, at

least 20% of the information contained in Pt is hidden in the yield curve.

Consider next the 10-year bond. As expected, results for this maturity (reported in Panel

B) are similar to those for the five-year bond. In particular, as shown in column 6 (11), only

59.3% (66.9%) of variance in expected excess monthly (annual) returns is captured by the

cross section of bond yields. Also, the unconditional mean of the excess return is higher than

that of five-year bonds (column 2), reflecting the slightly upward-sloping term structure of

real bond yields. Nevertheless, the model-implied Sharpe ratio is lower for ten-year bonds.

This observation is consistent with the generally inverse relation between the TIPS maturity

and Sharpe ratio as shown in Panel A of Table 9.

The analysis with the Fama-Bliss data has provided strong evidence for hidden factors

in the real bond market. Do similar results obtain with the GSW data? We estimate the

same four-factor (constrained) GDTSM using the GSW zero yields. Results reported in

rows labeled “SV 4” in Table 3 show that not much of the variations in expected returns

is hidden from the cross-section of yields. More specifically, four PCs of the yield curve

capture around 86–89% (90%) of the predictability of the state vector in the case of monthly
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(annual) excess returns. These results are especially worth noting given that the model-

implied unconditional moments here under “SV 4” are very close to those under “FB 4”.

They indicate that the risk premium factor in Model “SV 4” loads thinly on the third and

fourth factors. Accordingly, untabulated results confirm that with the GSW data the last

two elements in λ̂1l are barely significant. The above evidence indicates that the smooth

Svensson function has, to a great extent, washed out the hidden component in term premia.

The results presented so far are based on the four-factor GDTSM. A relevant question

is whether a lower-dimensional GDTSM can reproduce the evidence of hidden factors. As

reported in rows labeled “FB 2” in Table 3, variance ratios implied by the two-factor GDTSM

are greater than 94.5% (columns 6 and 11), regardless of bond maturities or return horizons

considered. This result is expected as the role of the first two factors in the cross section is

too important to be curtained by measurement errors.

Surprisingly, the three-factor GDTSM does not imply a considerable degree of unspanned

predictability either, as shown in rows labeled “FB 3” in the table. For instance, the model-

implied variance ratio is over 93% for both monthly and annual returns to the 10-year bond

(Panel B) and, in general, much closer to its counterpart under the two-factor model than

to the four-factor model. These results suggest that the “curvature” factor does not drive a

substantial fraction of the predictability of excess returns, at least compared to the fourth

factor. Indeed, unreported variance decomposition analysis (based on Model “FB 4”) shows

that a one-standard-deviation shock to the fourth factor moves the expected monthly return

on a five-year bond by about three times as an equivalent “curvature” shock does.

3.5 Inferring the State Vector from Yield Dynamics

Given the evidence from the four-factor GDTSM that the cross section of yields contains less

information about risk premia than is in the state vector, we need to look beyond the yield

curve when making return forecasts. However, the true state vector is not directly observ-

able. This subsection examines the question that how much information econometricians

can recover from yield dynamics by using Kalman filter.

We first conduct a simulation exercise to assess the effectiveness of Kalman filter in

inferring the state vector in the real bond market. The details of the exercise are provided
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in Appendix C. We summarize the main results of the exercise here: First, Kalman filter

really makes difference in its accurate estimates of the third and fourth factors (higher-

order factors). Interestingly, Kalman filtering does a better job in inferring the fourth factor

than the third factor. Second, Regressions of filtered estimates on observed yields produce

an R2 ranging from 82% to about 86% for the third and fourth factors; still, the 18-24%

unexplained portions of these estimates are clear evidence for the unspanned nature of the

third and fourth factors. These results imply that when model parameters are unknown,

econometricians can still effectively infer the state vector by estimating the model with a

reasonable, eleven-year sample.

Next, we evaluate the effectiveness of filtered (and smoothed) estimates of factors in

forecasting excess returns and especially, relative to that of the true state vector containing

all information on expected returns. Below we focus first on the population R2 of predictive

regressions implied by the estimated model and then on the finite-sample R2.

3.5.1 Population R2

Consider the j-month-ahead return on an m-period bond. For regressions on the true state

vector, their R2s values can be calculated analytically. The population R2 is given by

R2(Pt) =
βjmVar(Pt)βj

′
m

βjmVar(Pt)βj
′
m + (m− j)2BP,m−jΩB′P,m−1 + 2(m2 − jm+ j2)σ2

η

, (18a)

βjm = mB′P,m − (m− j)B′P,m−j(Φ
Q
P)j − jB′P,j. (18b)

Unlike the R2 for “true” returns, (18a) takes measurement errors into account, as reflected

by the last term in the denominator. For this reason, R2(Pt) is slightly smaller than the

corresponding R2 implied by Table 3.

Similarly, the population R2 using the filtered (smoothed) estimate can be obtained by

replacing Var(Pt) in the numerator in Eq. (18a) with the unconditional variance of P̂t|t (P̂t|T ).

For instance, the R2 using the filtered estimate is given by

R2(P̂t|t) =
βjmVar(P̂t|t)βj

′
m

βjmVar(Pt)βj
′
m + (m− j)2BP,m−jΩB′P,m−j + 2(m2 − jm+ j2)σ2

η

. (19)
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Since there is no analytic expression for Var(P̂t|t) or Var(P̂t|T ), they are again constructed

by simulating 10,000 years of data.

The first three rows in Panel A of Table 4 report results respectively for (the full-

information) R2(Pt), R2(P̂t|t), and R2(P̂t|T ), based on both monthly and annual returns.

We make three observations from these results. First, there is a greater predictability for

annual returns than for monthly returns. Second, as expected, the Kalman filter cannot

recover all information in the true factors about risk premia. Specifically, the gap between

R2(Pt) and R2(P̂t|t) ranges from 3.4% to 5.8%, depending on the return horizon and bond

maturity. Nevertheless, R2(P̂t|t) is greater than the yield-curve based R2. For example, the

Kalman filter captures 10.8% of variation in monthly excess return on a five-year bond, while

the yield curve captures only 8.37%.15 Also, as is the case with the true state vector, fore-

casting with filtered estimates also leads to greater predictability for annual returns than for

monthly returns. Third, R2(P̂t|T ) is greater than R2(P̂t|t), regardless of the return horizon

or bond maturity considered. Due to the look-ahead feature of smoothed estimates, they

contain more information on future bond returns than filtered estimates. Also, although

R2(P̂t|T ) is less than R2(Pt) in our estimated model, R2(P̂t|T ) can be higher than R2(Pt)

theoretically as the Kalman smoother may contain future information beyond the current

state vector.

An alternative approach to assessing the predictive power of estimated factors is to con-

struct OLS estimates. Calculation of R2(P̂t|t) in (19) is essentially inferring the market

expectation of future excess returns, under the null that the estimated model is true. But

we can also lift the functional restriction and directly run a predictive regression on filtered

factor estimates. The resulting R2 is given by

R2
ols(P̂t|t) =

γjmVar(P̂t|t)γj
′
m

βjmVar(Pt)βj
′
m + (m− j)2BP,m−jΩB′P,m−j + 2(m2 − jm+ j2)σ2

η

, (20)

where γm denotes the OLS coefficients. The row labeled “OLS Filtering” in Panel A of

Table 4 shows that this R2
ols(P̂t|t) is less than (very close to) R2(P̂t|t) for monthly (annual)

returns. Hence, relying on OLS to form the return predictor does not produce better results.

15It is slightly lower than the R2 implied by Table 3, in which bond returns are uncontaminated by
measurement errors.
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This implication is not surprising in the current setting, since the data is generated by

the estimated model. Given a sufficiently long simulated sample, we expect βm to pick a

more accurate linear combination of factors than γm does. Note that the latter forces the

orthogonality between the resulting predictor γmP̂t|t and the residual, which is not true

because P̂t|t does not capture all forecastable variations in excess returns. For completeness,

row 5 in the panel reports the results for R2
ols(P̂t|t); however, it is not particularly interesting

as P̂t|T contains information available after t.

3.5.2 Finite-Sample R2

With an extremely long sample, it is reasonable to assume that econometricians would

ultimately learn the true model parameters, as long as their estimation method is consistent.

In practice, only a limited time series of data is available. Consequently, the fraction of

forecastable variation that econometricians can capture depends on the estimator’s efficiency

as well as the model’s finite-sample properties. This subsection examines such fractions of

forecastable variation.

As before, we use 1,000 small-sample simulations to examine the accuracy of forecasts

produced by the Kalman filter in this setting. To facilitate the computation of R2
ols(P̂t|t),

we assume that (noise-contaminated) zero yields are observable for all maturities, but only

bonds with maturities of one through ten years are used to estimate the model. Note that

once the model estimation and Kalman filtering is done, we also obtain filtered innovations

to the state vector ε̂t|t as a by-product.

As a result, the model-implied finite-sample R2 can be expressed as follows:

R̂2(P̂t|t) =
β̂jmV̂ar(P̂t|t)β̂j

′
m

V̂ar
(
β̂jmPt|t − (m− j)B̂P,m−jΩ̂1/2ε̂t+1|t+1

)
+ 2(m2 − jm+ j2)σ̂2

η

, (21)

where the hat in R̂2(·) denotes a finite-sample R2. Similarly, the finite-sample equivalent to

the ratio (20) is given by

R̂2
ols(P̂t|t) =

γ̂jmV̂ar(P̂t|t)γ̂j
′
m

V̂ar
(
rxmt+j

) . (22)

The smoothed estimates-based R̂2(P̂t|T ) and R̂2
ols(P̂t|T ) can be obtained similarly.
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We calculate the above four ratios using simulations and report their average values of

1,000 simulations in Panel B of Table 4. Due to the uncertainty in sampling and estimation,

most ratios in Panel B deviate from their counterparts in Panel A by at least 1%. However,

notice that the deviation is smaller for R̂2(P̂t|t) and R̂2(P̂t|T ). Therefore, if econometricians

fully trust the model estimated with maximum likelihood, their measurements of R2s would

be more in line with their “true” values; if they only appreciate the ability of the Kalman

filter (without the model) to extract information from yield dynamics, they tend to seriously

underestimate the predictability of monthly excess returns and overestimate predictability of

annual returns. Despite the clear small-sample bias, filtered factors alone still appear more

informative about the expected excess returns than the cross section of yields. For example,

regressing the monthly return to a five-year bond on these factors yields an R2 of 4.7%, while

the first four PCs of the yield curve capture only 3.2% of return variations (untabulated).

When the bond data is truly generated by a GDTSM, the (true) model-suggested optimal

predictor βjmP̂t|t is expected to have the best small-sample performance. As demonstrated in

Panel B, even if parameters constituting βjm are unknown and need to be estimated, β̂jmP̂t|t
still outperform its OLS counterpart (in terms of the closeness to the population R2). In

reality the yield dynamics may not be consistent with the Gaussian assumption. It is thus

important to make inferences about expected excess returns in our real sample, especially,

to explore the difference between the sample R2 and the model-implied finite-sample R2.

3.5.3 R2 in the sample

The first row in Panel C of Table 4 reports the sample version of R̂2(P̂t|t) given in (21),

denoted R̃2(P̂t|t). Clearly R̃2(P̂t|t) is greater than R̂2(P̂t|t) (the average of simulated sam-

ples), regardless of the return horizon and bond maturity; the difference is substantial for

annual excess returns, around 10%. However, the sample R̃2(P̂t|t) is still covered by the 90%

confidence bounds constructed from the same simulations, as shown in brackets underneath

the mean ratios in Panel B.16 This implies that the filtered estimate of the state factor does

16Since all ratios in Panel C are greater than their corresponding simulated ratios in Panel B, it becomes
more like a one-sided hypothesis test. Therefore, we report the 90% confidence interval where the upper
bound is the 50th largest ratio among the 1,000 simulations.
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not offer compelling evidence for model misspecification. The same conclusion can be drawn

from R̃2(P̂t|T ) (the sample version of R̂2(P̂t|T )) reported in the second row.17

We implement the sample version of (22), denoted R̃2
ols(P̂t|t), for annual returns (over the

2006-2014 period) only, due to the unavailability of one-month and one-year yields. As can

be seen from Panels B and C, for both 5- and 10-year bonds R̃2
ols(P̂t|t) is higher than R̂2

ols(P̂t|t)

and, in fact, near the upper bound of the latter’s 90% confidence interval. An adjustment

for the difference in the number of observations (between the regression in the sample and

the regression in simulations) narrows the gap slightly, but the sample ratio R̃2
ols(P̂t|t) is still

substantially higher.

Overall, the simulation evidence indicates that the R2 realized in our data sample seems

a bit too high compared to the expected values implied by the model. On the other hand,

there is a serious possibility that the estimated model truly describes the data-generating

process but we somehow picked a particular sample with an R2 well above the average.

We find that both the finite-sample bias (the differences between Panel A and B) and

sampling uncertainty (the differences between Panel B and C) contribute to the inflated R2s

in our data sample. The magnitude of this inflation is consistent with the evidence about

nominal Treasury bonds, as documented in an early version of Duffee (2011): in the case of

using filtering factors to predict five-year bond returns, the real sample R2 (38.1%) is about

20.6% higher than the population R2 (17.5%); and the gap reported by Duffee is around

19.5% (37.7% against 18.2%).18 Despite this discrepancy, filtered factors are shown more

informative in predicting excess returns than cross-sectional yields, in both the population

and the finite-sample settings. A comparison between their performances in the real sample

is presented in the next subsection.

17Another potential mismatch between the model and sample properties, as noted in Duffee (2011), is
about the sample correlation between filtered month-t conditional expectations of excess returns and month-
t + 1 return shocks. According to Eq. (21), a highly positive correlation would elevate the sample variance
of “true” returns, leading to a relatively low R2, and vice versa. This issue does not arise in our sample, as
the highest (absolute) correlation coefficient among all returns is less than 15%. Accordingly, the average
correlation in our small-sample simulation ranges from 3% to 10%, depending on the bond maturity.

18In our study, the gap for smoothed factors is remarkably smaller than Duffee’s estimate, as the short
sample for real bonds does not offer substantial benefit by using future information.
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3.6 Sample Properties of Alternative GDTSMs

Section 3.4 presents evidence, based on population properties of alternative GDTSMs, that

the two- and three-factor GDTSMs underestimate the importance of the “hidden” component

in risk premia, and thus imply a lower degree of return predictability. Given the substantial

differences between the sample and population properties of the four-factor model, it is

essential to look at the sample R2 suggested by alternative models as well. The top panel of

Figure 3 plots the R2 for predictive regressions of annual excess returns on the state factor

filtered using different models. The 95% confidence bounds are plotted only for the four-

factor model, as represented by dashed lines. Complementary to the results in Table 4, the

point estimate of the sample R2 under the four-factor model is close to the upper bound of

the confidence interval for five-year or longer maturity bonds. For shorter-maturity bonds,

the sample R2 lies near the middle of the confidence interval.

A brief glance at those solid lines reveals that a model with higher dimension is more

useful in forecasting returns. The dominance of five-factor model is most clear with the

four-year bond, with a difference in R2 of at least 16% from three-factor and two-factor

models. It also outperforms for almost all other maturities, except for the ten-year bond. If

we rely on a principal component analysis to determine the model dimension and thus choose

the two-factor model, a lot of information would be lost in our inference of term premia.

Compared to the four-factor model, the loss in state variables’ predictive power is greatest

for those intermediate-term bonds. This pattern is consistent with results in Table 3, where

the “FB 2”-implied population R2 is 8% lower for the five-year bond and 3% lower for the

ten-year bond. As expected, the two-dimensional state vector produces R2 statistics subtly

different from those based on principal components of bond yields.

Consistent with the results obtained in Section 3.4, we find that the two-factor and

three-factor models have difficulty in fully uncovering information in hidden factors over

the sample period. But all these models are constrained in the sense that expected excess

returns are restricted to being driven by a single factor. To complete our analysis, we draw a

comparison of R2s between constrained and unconstrained four-factor models. As illustrated

by the lower panel in Figure 3, the green line representing the unconstrained model exhibits

the same shape across maturities as the blue line, but at a higher level. In other words, the
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restriction (14) to some extent inhibited us from extracting more information on expected

excess returns, though it leads to more reasonable Sharpe ratios.

To further assess the validity of the restriction imposed on term premia, we plot in the

same figure the sample R2s based on the annual return predictor, β12′
m Pt, implied by the

constrained model,19

R2 =
ζ̂2mV̂ar(β̂12′

m P̂t|t)
V̂ar

(
rxmt+12

) ,

where ζ̂2m denotes the univariate regression coefficient. We find that the resulting cyan line

generally runs below the blue line, but within the 95% confidence bounds for (22). Therefore,

the difference in the predictive power between β̂12′
m P̂t|t and P̂t|t can be roughly considered

statistically insignificant. When we take a closer look at the multivariate regression coef-

ficients γ̂12m , we find that they are largely proportional to, but substantially greater than,

model-implied coefficients β12′
m . Accordingly, the estimate of ζ2m is greater than one for all

maturities. Therefore, the constrained model is picking the right linear combination of state

variables, but underestimating the total amount of predictability.

4 Extracting Hidden Factors

All point estimates in the last section point to an economically important component of

bond risk premia that is hidden from the yield curve. However, there is nontrivial sampling

uncertainty and model uncertainty in these estimates, judging from the wide confidence

intervals and the gap between return predictability in the sample and the model-implied

predictability. To ensure that the evidence for hidden factors is not spurious, we need to

explicitly extract them from the sample and link them to other sources of information.

Results in Section 3.2 suggest a divergence between factors driving monthly excess returns

and those driving annual excess returns. We confirm this finding in this section and thus

look for a “monthly” hidden factor and an “annual” hidden factor. The next subsection

presents our inference of the hidden component in monthly bond premia, which is facilitated

by the model restriction imposed on the market price of risk. As to annual returns, we follow

19To take account of the difference in the number of predictors, all lines in the lower panel depict adjusted
R2s.
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an early version of Duffee (2011) by investigating the characteristics of each filtered state

factor. We will demonstrate in Section 4.2 that the fourth factor is closest to the definition

of hidden factor – it makes little contribution to the cross section of yields but plays an

important role in yield dynamics and annual excess returns.

4.1 The Hidden Factor Driving Monthly Excess Returns

The constrained four-factor model presented in Section 3.2 posits that the one-period ex-

pected excess returns on bond portfolios be driven by λ′1lPt, a single line combination of

the state factors. It follows that the hidden component of this risk-premium factor can be

defined as the part unspanned by the first four PCs of observed yields as follows:

Ht ≡ λ′1lPt − E(λ′1lPt|P̃t). (23)

By construction, since P̃t summarizes almost all information on cross-sectional yields, Ht

supposedly has a minimal effect on the contemporaneous term structure and thus is a “hidden

factor.” This is illustrated in Panel A of Figure 4, which plots the yield loadings on Ht as

implied by the estimated model. The impact of a one-standard-deviation change in Ht is no

more than 2 bps regardless of the bond maturities, too small to be distinguished from the

noise ηt in (15).20

Despite the negligible effect on the cross section, the evidence in Table 3 implies that Ht

should account for a substantial fraction of predictable variations in monthly excess returns.

Panel B depicts the following projection of expected monthly excess returns onto Ht

E(rxmt+1|Ht) = −(m− 1)BP,m−1λ1Cov(Pt, Ht)Var(Ht)
−1Ht,

where the expressions for Cov(Pt, Ht) and Var(Ht) are given in Duffee (2011). Note from the

figure that the effect of a one-standard-deviation shock to Ht on the expected excess return

ranges from 21 to 32 bps for bonds with maturities of two through ten years. For instance,

one such negative shock can lower the expected excess return of a five-year bond to -13 bps

20Since the signs of latent factors are not important, for interpretation purpose we reverse the sign of Ht

such that it positively co-varies with expected excess returns, as shown in Panel B of Figure 4.
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if the expected value currently is assumed to be about 9 bps per month (its unconditional

mean).

If Ht drives up expected excess returns while keeping the yield level constant, it has to

lower the expectation of future short rates, according to the following yield curve decompo-

sition:

ymt =
1

m

m−1∑
i=0

Et
(
y1t+i
)

+
1

m

m−1∑
i=1

Et
(
rxm−i+1

t+i

)
(24)

The impulse responses illustrated in Panel C of Figure 4 supports this implication. While a

one-standard-deviation increase in Ht has little effect on the one-month rate at time zero, it

induces a decline of about 8.5 bps three months later; however, half of the decline would die

away in another five months and the short rate no longer exhibits much response one year

after the original shock. Such quickly disappearing effect implies that Ht’s predictive power

for monthly excess returns may be limited to short forecast horizons. For instance, consider

a five-year zero at time t. While a one-standard-deviation shock to Ht increases this bond’s

excess return over the next month (rx60t,t+1) by 22 bps (Panel B of Figure 4), the impact of

this shock on the same bond (the projection of rx48t+12,t+13 on Ht) would shrink to merely 1.6

bps in one year.

The evidence in Panel C also suggest that Ht plays a much less important role in expected

annual excess returns. Applying Eq. (24) to a two-year bond yields

y24t =
1
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)
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1
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+
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Et
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rx24t+12

)
. (25c)

Within the expectation component, expected short rates less than 12 months ahead consti-

tute the term (the first term in (25a)) showing significant reactions to the hidden factor. In

other words, Ht exerts very limited influence on second term, which turns into the expected

one-year rate 1
2
Et
(
y12t+12

)
in (25b) and (25c) by combining the last term in (25a). Therefore,

Ht’s impact on the future one-year rate is expected be much less impressive than that on
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one-month rate. Since Ht also has little effect on the current one-year rate, the annualized

version of yield decomposition (25c) implies that the hidden component in monthly bond

premia is not a prominent driver of annual excess returns.21

Impulse responses of the one-year yield to one-standard-deviation changes in Ht, shown in

Panel D of Figure 4, reinforce the above finding. Note that the peak of the impulse response

function has a magnitude of only 4 bps (in 3-4 months), much lower than the largest response

of one-month rate to the same shock (more than 8.5 bps, as shown in Panel C). This contrast

is more sharp considering that the model-implied unconditional mean of one-year rate is 6

basis points greater than that of one-month rate. Like the case of one-month rate, Ht also

has almost no immediate effect on one-year rate (0.23 basis point), hence a lesser negative

effect on the the expected one-year rate means a lesser positive effect on the annual risk

premia.

Overall, we find that the hidden component of the risk-premium factor drives monthly risk

premia and expected one-month rates in opposite directions. On the other hand, it carries

less important implications about the yield composition with a one-year holding period, as

its effects on both annual risk premia and expected one-year rates are much weaker. This

finding implies a significant departure of main determinants of short-run term premia from

those driving expected returns at longer horizons. Indeed, the single risk-premium factor

λ′1lPt, which is supposed to summarize all information on expected monthly returns, explains

a much smaller portion of than indicated by Figure 3, with the lowest R2 of 9.2%.

4.2 The Fourth Factor Being An “Annual” Hidden Factor

Given the evidence in Section 4.1 that neither λ′1lPt nor its hidden component shows partic-

ularly strong predictive power for annual excess returns, the next question is whether there

are hidden factors that are important in determining investors’ expectations of future yields

at a relatively long horizon. Following an early version of Duffee (2011), we explore the

possibility that certain state factors behave exactly as a hidden factor.

21From a different angle, we can see that Ht’s impact on the term premium component is mainly through
the third term in (25a). But it is to a great extent offset by the second term in (25b). As a result, Ht’s
net effect on the combination of these two terms, which is the expected annual returns 1/2Et(rx

24
t+12) as

represented by the last term in (25c), is more like a mixed bag.
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We first look at the importance of each state factor in forecasting annual excess returns

in the data sample. Specifically, given a n-year bond with n ranging from 2 to 10, we run a

predictive regression of annual excess returns of the bond on each of the four filtered state

factors separately; for every regression, the covariance matrix of the coefficient estimates is

computed using either the robust Hansen-Hodrick approach or the Newey-West procedure.

Panel A of Figure 5 plots the Hansen-Hodrick t-statistic (solid line) of these regressions,

along with its 95% confidence bounds (dotted lines) for the finite-sample t-statistics, versus

the bond maturity. Since using Newey-West standard errors leads to similar t-statistics

(Panel B), we focus on Panel A only in the discussion that follows.

We make three observations from Panel A. First, the “level” factor shows strong predictive

power for short-maturity bonds and, in particular, the t-statistic decreases in the bond

maturity for bonds longer than five years and becomes statistically insignificant for the

ten-year bond. Second, the “slope” factor shows a different pattern of the forecast power

across maturities: It is not significant in forecasting returns on the two-year and three-

year bonds, but sees its t-statistic generally increasing with the maturity. Third, while the

“curvature” factor (the third factor) shows no significant forecast power for bond excess

returns, the fourth factor does exhibit such forecast power, regardless of the bond maturities

(the entire curve of the t-statistic for the fourth factor lies within the confidence bounds,

indicating a statistical significance at the conventional 5% level). This result is expected:

Given the evidence documented earlier on the importance of unspanned factors in driving

expected excess returns, one of the higher order state factors must explain a great portion

of predictable variance.

As such, together with the fact that the four factor has trivial effect on the yield curve,

the evidence in Figure 5 suggests that the fourth factor is a hidden factor.

To gain more evidence on the above interpretation, we examine the model-implied prop-

erties of the fourth factor and see whether it drives risk premia and expected one-year rates

in opposite directions. Panel E of Figure 4 illustrates the impulse responses of the one-year

yield to a one-standard-deviation shock to P4,t (again with its sign flipped). Despite its zero

effect on the month-t yield, the shock leads to a 18-basis-point drop in month t + 10. And

the yield remains 10 bps below its mean, 20 months ahead. On the other hand, Panel F of
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the figure shows that P4,t has significant, positive impact on annual excess returns rxmt+12

and that the resulting increase in expected excess returns ranges from 129 to 248 bps.

The evidence so far indicates that the fourth factor shows particular importance in deter-

mining investors’ expectations of future yields. We next investigate its role in term structure

modeling. Figure 2 shows that the third factor is curved at about the three-year maturity,

with the heaviest loading on the three-one year spread. Instead, the fourth factor is curved at

the five-year maturity (the median point among all maturities used in estimation); it loads

most strongly on the two-five year spread, unlike the standard “curvature” factor that is

usually centered at the short end of the yield curve. Theoretically, the additional curvature

captured by the fourth factor permits greater flexibility in fitting the yield curve. But does

this advantage translate into better modeling performance?

To answer this question, we examine the ability of the benchmark model (the four-factor

GDTSM) and its two special cases (the two- and three-factor models) to predict real yields

at different horizons. Specifically, for a given forecast horizon j (month) at time t, we focus

on each model’s root mean squared error (RMSE), where the pricing error for any given

bond is defined as the time-(t + j) model yield implied by the filtered time-t state vector

(Pt|t) minus the time-(t + j) observed yield of the same bond. Recall that Pt|t available at

month t can be used to construct forecasts of month t+ j bond yields.

Table 5 reports each GDTSM’s RMSE for each of the bonds with maturities of one

through ten years, for four different forecast horizons that include j = 0 (Panel A), 1 month

(Panel B), 6 months (Panel C), and 12 months (Panel D). Note that when j = 0, the pricing

error is also referred to as the fitting error. We make three observations from the table.

First, the four-factor model clearly dominates the two- and three-factor models, regardless

of the bond maturities and forecast horizons considered. This result is consistent with the

implication of the model population properties summarized in Tables 3 and 4—namely, the

four-factor model does better than a lower-dimensional model at predicting bond excess

returns or equivalently, predicting future yields. Second, the four-factor model improves the

performance especially for bonds with maturities of four through six years, likely due to

the fact that the fourth factor is an additional curvature factor centered around the five-

year maturity. The resulting convexity effect introduced into the middle section of the yield

30



curve also helps improve the model performance in the long end of the curve. Third, the

improvement in forecast accuracy generally increases with the forecast horizon. For instance,

the average of the ratios of the four-factor model’s RMSE to the three-factor one’s decreases

from 94% to 91% and further to 85% when the forecast horizon increases from one month

to six and then twelve months.

4.3 Economic Interpretation of Hidden Factors

A main bugbear for studies on hidden factors is a direct link to fundamental macroeconomic

forces (Duffee, 2011; Chernov and Mueller, 2012). This subsection aims to provide an eco-

nomic interpretation of hidden factors extracted in the real bond market. To this end, we

first show that these factors truly capture investor’s expectations of future short rates. We

then explore the relation between hidden factors and various macroeconomic instruments.

We find that while the “monthly” hidden factor Ht covaries with aggregate economic ac-

tivities, the “annual” hidden factor is closely related with the housing sector. Lastly, we

demonstrate that neither hidden factor is a “liquidity” factor.

4.3.1 Evidence from Surveys

Consider Êt(∆y
3
t+j), the expected change in the three-month real rate constructed using

Eq. (1) for a given forecast horizon of j (month), where j = 1, . . . , 12. To see how much of

the expected change can be explained by the two hidden factors (Ht and P4,t), we regress

Êt(∆y
3
t+j) on filtered estimates of each hidden factors separately, and report the regression

results in Panel A of Table 6. Note that both the hidden factors are normalized to have a

unity standard deviation over the sample period 2004Q1–2012Q4, slight shorter than the one

used to estimate the term structure model due to the availability of survey data. Also, as

the constructed quarterly forecasts are serially correlated, t-statistics shown (in parentheses)

are calculated using Newey-West standard errors for four lags of moving average residuals.

The slope coefficient on the “monthly” hidden factor (Ht) is significantly negative, regard-

less of the forecast horizons considered. A one-standard-deviation increase in Ht corresponds

to an expected drop of about 10 bps in the three-month rate. Both the sign and magnitude

of coefficients are consistent with the model-implied impulse responses (which are similar to

31



those plotted in Panel C of Figure 4). However, the pattern of variation in the magnitude

of this coefficient across forecast horizons is different from the model’s implication: instead

of quickly dying away after the first quarter, the magnitude of the coefficient gradually de-

clines (from around 10.6 for j = 1 to 5.8 for j = 12) and remains significant even twelve

months ahead. The regression R2 decreases from 0.25 to 0.10 as the forecast horizon (j)

increases from one to 12 months, indicating that Ht has significant explanatory power for

Êt(∆y
3
t+j)∀j.

Like the coefficient on Ht, the coefficient on P4,t (the “annual” hidden factor) is also

significantly negative (consistent with the model due to the reverse sign of P4,t), regardless

of the forecast horizons considered. However, the magnitudes of the latter coefficient and

its t-value are notably lower than those for the former coefficient except for j = 12. This

is not surprising as P4,t, supposed to have more significant effects on expected one-year

yields, draws less strong response of the three-month yields. The pattern of variation in the

magnitude of the coefficient on P4,t across forecast horizons is in line with the model-implied

properties of P4,t: the magnitude is does not decline much as the forecast horizon increases

and the response to P4,t is more persistent over long horizons,

Overall, the regression results provide evidence that the filtered hidden factors are not

spurious and capture investor’s expectations of future short rates.

4.3.2 Hidden Factors and Macroeconomic Variables

Given the evidence presented in Section 4.3.1, a natural question then is through what

economic mechanisms the hidden factors affect expected real yields. To answer this question,

we consider economic variables that may have significant explanatory power for variations

in these factors.

We focus on two measures of real economic activity first. One is the three-month moving

average of the Chicago Fed National Activity Index (CFNAI-MA3), a weighted average of 85

economic indicators that is often used as a proxy for the risk associated with real economic

conditions (e.g., Joslin et al. 2014).22 The other is the first PC of 131 macroeconomic

22CFNAI-MA3 is designed to gauge overall economic activity and related inflationary pressure, and similar
to the index of economic activity developed by Stock and Watson (1999). Generally, a positive CFNAI-MA3
indicates that the national economy is expanding at an above-historical-average growth rate, and vice versa.
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variables used in Ludvigson and Ng (2008).23 This measure, denoted by f̂1, is shown by

Duffee (2011) to have significant explanatory power for his nominal hidden factor.

The first two columns in Panel B of Table 6 report the results from univariate regressions

on CFNAI-MA3 and f̂1, respectively, for each of the two hidden factors. We can see that

both CFNAI-MA3 and f̂1 are negatively associated with Ht (the “monthly” hidden factor)

and have significant explanatory power for this factor. More specifically, CFNAI-MA3 and

f̂1 have respectively an R2 of 8.9% and 31%. This difference in R2 is mainly due to the

recent financial crisis, during which Ht remained stable in Q1 and Q2 2008 but plumbed

in Q3, mirroring the variation in the Industrial Production Index (IP). This macro shock

is captured by f̂1 that loads heavily on IP and related indices, but less so by CFNAI-MA3

whose moving average feature smoothes out the macro shock. On the other hand, neither

CFNAI-MA3 nor f̂1 shows any explanatory power for P4,t, the hidden factor driving expected

annual returns.

Next we consider economic variables beyond those of real activity. Specifically, we divide

the 131 series used to construct f̂1 into the following eight different groups as defined in

Ludvigson and Ng (2011): (i) output, (ii) labor market, (iii) housing sector, (iv) orders and

inventories, (v) money and credit, (vi) nominal bond and FX, (vii) prices or price indices,

and (viii) stock market. Then, for each of these groups we estimate a dynamic factor model

to construct a single “group” factor, denoted ĝi, i = 1, . . . , 8, and examine its explanatory

power for the hidden factors.

Columns 3 through 7 in Panel B report the results for those five group factors found

to have significant explanatory power for either of the two hidden factors. Among these

five group factors, the output (ĝ1), labor market (ĝ2), nominal bond market and FX (ĝ6),

and stock market (ĝ8) factors each negatively co-varies with Ht with an R2 of 9%, 9.3%,

10.3%, and 11.6%, respectively. The housing market factor (ĝ3) is found to have significant

explanatory power for P4,t (the “annual” hidden factor) with a t-value of -9.26 and an R2

of 27.5%.24 Untabulated results indicate that the eight group factors jointly explain 44%

23The original data set consists of 132 time series. However, the variable “Employee Hours In Nonagricul-
tural Establishments” has been discontinued.

24This group factor is constructed from 10 different measures of aggregate housing starts and housing
authorization and may be a proxy for consumers’ expenditure share on housing. The latter’s effect on risk
premia is theorized by Piazzesi et al. (2007). Huang and Shi (2010) find that a different factor constructed
using the same 10 series possesses significant forecasting power for excess returns on nominal Treasury bonds.
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of variation in Ht and that not surprisingly, the inflation factor (g7) is insignificant in both

univariate and multivariate regressions.

To summarize, Panel B provides evidence that hidden factors in the real bond market

have clear economic interpretations. In particular, while the hidden component in monthly

real risk premia strongly co-varies with general measures of macroeconomic conditions, the

“annual” hidden factor is strongly correlated with the dynamic factor retrieved from the

group of housing market variables.

4.3.3 Hidden Factors and Illiquidity

This subsection addresses the concern that our estimates of hidden factors may simply cap-

ture the liquidity premium in the TIPS market rather than the pure risk compensation for

receiving long-horizon cash flows. In particular, even though our sample does not cover the

early years of the TIPS market that are subject to poor liquidity, it does include the recent

financial crisis during which a flight-to-liquidity occurred. As such, we examine whether

these hidden factors are related to standard measures of the liquidity conditions in the TIPS

market.

We consider the following seven liquidity measures commonly used in the literature:25

(i) the TIPS transaction volume relative to that of nominal Treasury notes and bonds; (ii)

the bid-ask spread of ten-year TIPS; (iii) the average TIPS curve fitting errors based on

the Svensson model; (iv) the difference between the asset swap spread (ASW) for TIPS and

that for (off-the-run) nominal Treasuries; (v) the spread between the ten-year inflation swap

rate and the TIPS breakeven rate; (vi) the spread between the on-the-run and off-the-run

ten-year nominal Treasury yields; (vii) the spread between the 20-year Resolution Funding

Corporation (Refcorp) STRIPS and Treasury STRIPS. Among these liquidity proxies, the

first three represent the “quantities” of liquidity risk in the TIPS market, the next two

supposedly capture the risk premium for taking such liquidity risk,26 and the last two are

indicators of liquidity premia in the general Treasury market.

25Studies using at least one of these measures include DAmico et al. (2012), Roush (2008), Campbell et al.
(2009), Gürkaynak et al. (2010), and Pflueger and Viceira (2010).

26These two variables are not available over the entire sample period. We have data on TIPS asset swap
spreads (from Barclays Capital) available since July 2007 and the ICAP inflation swap data since April 2004.
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The top panel of Table 7 shows the evidence on the performance of the seven liquidity

proxies in explaining Ht. Only “Fitting error” and “Refcorp spread” are marginally signifi-

cant in univariate regressions, but the significance disappears once regressions are augmented

with the other proxies. The spread between on- and off-the-run nominal yields appears the

only significant variable in the multivariate regression, albeit with an unexpected negative

sign, where the seven measures jointly explain 12.1% of variation in Ht. This R2 level is well

below the R2 generated by a single macro factor f̂1.

Similarly results obtain when P4,t is considered, as indicated in the bottom panel of the

table. For instance, while only “InfSwap-BEI spread” and “TIPS-nominal ASW spread”

are significant respectively in the univariate and multivariate regressions, the signs of their

coefficients are inconsistent with the economic intuition. Furthermore, the (adjusted) R2 of

the multivariate regression is only 14.3%, about half of what is obtained with the housing

factor ĝ3 (Panel B of Table 6).

To summarize, we find more convincing evidence that hidden factors reflect changes in

the macroeconomic fundamental rather than the bond illiquidity.

5 Conclusion

This paper examines the predictability of returns in real bonds, using information from the

TIPS market. Specifically, we first construct unsmoothed real yields of zero-coupon bonds

with maturities of one through ten years using TIPS data. We then conduct our analysis

within the framework of Gaussian dynamic term structure models (GDTSMs). Our main

finding is that a significant portion of variations in real bond risk premia are captured by

predictors that hidden from the cross-section of real yields. Importantly, these so-called

hidden factors can be extracted from unsmoothed real yield curves only as the process of

smoothing yield curves artificially erases hidden factors. We find evidence that our extracted

hidden factors are linked to measures of real activity and housing factors.

Specifically, we estimate a four-factor GDTSM with unsmoothed real yield curves and

infer hidden factors using the Kalman filter. We find evidence of two hidden factors, one for

monthly real bond excess returns and one for yearly excess returns. Based on the model’s
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point estimates, about 40% of variations in monthly real risk premia are attributable to the

“monthly” hidden factor. In the case of annual excess returns, depending the bond maturity,

the R2 of predictive regressions of such returns improves by 5 to 20% when the cross-section

of yields is replaced by the filtered state vector as the return predictor. Furthermore, we

find that while the “monthly” hidden factor significantly co-varies with general measures

of real activity, the “annual” hidden factor is strongly correlated with the housing factor.

Additionally, bond illiquidity cannot explain variations in the hidden factors.

In conclusion, this study provides robust evidence that information other than what is

contained in the cross section of real yields is very useful for predicting excess returns on

real bonds and that the use of unsmoothed real yields is necessary for the construction of

such (hidden) return predictors.
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A Construction of Real Zero-Yield Curves

A.1 Estimation of TIPS Indexation Lag Correction

We consider zero-coupon bonds with a unity par only in this subsection. Let ymt , yTIPS,mt ,

and p$t (m) denote respectively the time-t real yield, TIPS yield, and log nominal price with

maturity m. Also, let f $
t (m→ h) be the time-t nominal forward rate over the period [m,h].

To obtain an estimate of real yields, we begin with the following equation that links them

with nominal and TIPS yields:

ymt =
h

m
yTIPS,ht − l

m
f $
t (m→ h) +

1

m
γt(m) (26)

where ` > 0 is the TIPS indexation lag and h = m + `; γt(m) ≡ covt(p
$
t+m(`), it+m − it),

denoting the conditional covariance between the future inflation and nominal bond log prices.

Note that the last term on the right-hand side (RHS) of Eq. (26) represents an adjustment

made to the TIPS yield due to the indexation lag. As shown in Evans (1998), Eq. (26)

provides an arbitrage-free and relatively model-free approach to estimating real yields by

correcting for the indexation lag.

We estimate the correction γt(m) using an approach in the spirit of Evans (1998). The

idea is to include all relevant variables in a vector autoregression (VAR) system to generate

multi-period forecasts of γt(m). Consider the following first-order VAR model:

xt+1 = Axt + et+1, (27)

where x′t = [∆it, p
$
t (`), zt], zt is a vector of conditional variables that may affect γt(m), and

A the coefficient matrix. Once A and innovation variances V (et+j|xt), ∀j > 0 are known,

γt(m) can be calculated using the following formula:

γt(m) = ι′1

[
m∑
i=1

Aτ−i

(
i∑

j=1

Ai−jV (et+j|xt)Ai−j,
)]

ι2, (28)

where ι1 and ι2 are the selection vector such that ∆it = ι′1xt and p$t (`) = ι′2xt.
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Note that given the purpose of this study, we need to estimate γt(m) recursively, via

Eq. (28), using information up to time t only. Doing a one-time estimation (of γt(m)) with

the whole sample (the conventional approach in the literature) is not suitable here as it

involves the use of future information. To have sufficient observations to run the recursive

estimation, we extend our sample period back to January 1997 (when TIPS were initiated)

in this exercise. Since January 2004, γt(m) are estimated with an expanding window (using

all data available up to month t).

The first four columns of Table 8 present annualized estimates of γt(m) based on the

first- to fourth-order VAR systems, where the estimates in bps are obtained by multiplying

monthly estimates of γt(m) by −120000/m, for m = 1, . . . , 10 years. For comparison, the

γt(m) estimates obtained non-recursively are reported in the last four columns. Note that

the recursive estimation results in a smaller magnitude of γt(m), regardless of the VAR

models and bond maturities considered. Nonetheless, the difference is not substantial as

γt(m) itself contributes merely 0.5-1.7 bps to the annualized real yields.27 Such a small

correction, especially for long-term yields, is due to the fact that the covariance term in

Eq. (26) contributes little to the correction for indexation lag. The (negative) difference

between real and TIPS yields is mainly because the nominal term structure is more upward-

sloping than the real term structure. As a result, the second term on the RHS of Eq. (26)

tends to overweigh the difference between (h/m)yTIPS,ht and yTIPS,mt .

Among the four sets of estimates of γt(m) obtained recursively, we choose those based

on the VAR(2) model (ranked the first under the Hannan-Quinn and Schwarz information

criteria) in the construction of real yields that are used in the empirical analysis of this study.

Note that the size of the covariance term under this VAR model generally increases with the

maturity.

27These estimates of γt(m) are consistent with those obtained by Grishchenko and Huang (2013) using
TIPS data for the 2000–2007 period, and also with Evans (1998)’s based on the UK’s data.
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A.2 Estimation of the Three-Month Real Rate

This section describes how to construct the three-month real rate (y3t ) using the Campbell

and Shiller (1996) VAR-based approach, under the assumption of no inflation premium at

short horizons.

Variables considered in the Campbell and Shiller (1996) study include the ex post real

return on a 3-month nominal Treasury bill, the nominal bill yield, and the once-lagged

annual inflation rate. Our VAR system includes all these variables as well as long-maturity

nominal bond yields. We solve the VAR forward to generate forecasts of future three-month

real interest rates. Note that this estimation of real short rates does not presume that

the expectation hypothesis describes the real term structure, as we do not aggregate the

forecasts to generate implied long-term real bond yields. Rather, this method is implicitly

based on the assumption of zero inflation premium—whose magnitude is shown to be small

for shortest maturity bonds (Buraschi and Jiltsov, 2005).

Figure 6 displays the three-month-ahead VAR forecast, which serves as our fitted yield

on a hypothetical three-month real bill. For comparison, we also plot realized real returns on

nominal 3-month T-bills, the variable to be forecasted. We note that the real rate appears

to be more volatile when calculated ex post. It indicates that completely indexed Treasury

bills, if they exist, do offer a considerable degree of inflation protection. The overall level

of short real rates is fairly low over our sample period, averaged at -76 basis points. As

expected, it is overwhelmingly negative after the financial crisis.

B Restrictions on Risk Premia Dynamics

In a four-factor GDTSM, there are twenty free parameters governing the P-distribution of

risk factors. Faced with such a large number of free parameters, we explore the best set of

restrictions on Λt to make the model more parsimonious and economically plausible. In this

appendix, we aim to gain some basic understanding of how PC risks are reflected in excess

returns on real bonds.

Our analysis on the source of real bond premia is inspired by Duffee (2010), who finds

that when the model-implied conditional Sharpe ratios are constrained to reasonable values,

39



risk premia are earned only as compensation for exposure to “level” and “slope” shocks. We

firstly investigate whether real term structure models suffer the same problem on Sharpe

ratios. Panel A of Table 9 reports sample means, standard deviations and Sharpe ratios of

monthly excess returns on TIPS. Theoretically, real (inflation-adjusted) returns should be

the variable of interest. However, while one-month (four-week) nominal T-bills are issued in

the US, there exists no equivalent short-term instrument with fixed real payoffs. As discussed

in Campbell and Shiller (1996), the ex post real bill return is a poor proxy for the ex ante

real rate, even for very short maturities. This issue is tackle in two ways: on one hand,

we follow Campbell and Shiller (1996) by constructing an ex-ante measure of one-month

real interest rate, based on a VAR system; on the other hand, we also consider the nominal

returns on TIPS.

Consistent with the finding in previous studies on nominal Treasuries (Fama and French,

1993; Campbell and Viceira, 2001; Duffee, 2010), we find that unconditional Sharpe ratios are

highest for short-maturity TIPS. This result is robust to the use of real returns or nominal

returns. Nevertheless, the relation between maturity and Sharpe ratio is not monotonic.

While the five-year to ten-year portfolio does have a much lower Sharpe ratio compared to

the one-year to five-year portfolio, its numbers are also a little lower than the bucket with

longer maturities. This slight “U”-shape relation is undiscovered in the literature because

previous studies focus on maturities no longer than ten years. Given the magnitude of Sharpe

ratios reported in the table, we set 0.18–0.23 as the benchmark for unconditional maximum

Sharpe ratios in our model diagnosis.

Panel B exhibits Sharpe ratios implied from different models. Unconditional maximum

ratios are reported only for simple returns, assuming a complete bond market. For the

unconstrained model, the number is 0.759, about three times the benchmark range. This

model also produces conditional maximum Sharpe ratios averaged at 0.92–1.70, depending

on whether the ratios are calculated using simple returns or log returns. The simple-return-

based conditional Sharpe ratios are substantially higher, ranged to 22.67.

As the results indicate that the four-factor real model overfits the data, we impose a

Sharpe ratio constraint in the model estimation. Following Duffee (2010), we specify that

the sample mean of model-fitted conditional maximum Sharpe ratios θ̂t cannot be greater
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than a scalar c

θ̂t =
T∑
t=1

√
(λ0 + λ1P̂t)′Ω−1(λ0 + λ1P̂t) ≤ c. (29)

Starting at c = 0.10, we estimate the model 11 times; each time the constraint is tightened

by 0.2 until it reaches c = 0.60. We find that when c is fixed at 0.30, the model-implied

unconditional maximum ratio is aligned with the benchmark, between 0.18 and 0.23. To

look at the properties of this constrained model, we decompose population means of excess

(log) returns into compensations for exposure to PC risks. As discussed in Section 3.1, our

principal component decomposition is based on the covariance matrix of shocks to yields. As

such, it provides a consistent way for understanding which PC risk is priced. In this sense, it

is slightly different from Duffee (2010)’s decomposition, which is based on the unconditional

covariance of yield levels, but is consistent with Duffee (2011)’s approach.

The decomposition result is reported in Panel C, where all entries are scaled by the

unconditional standard deviation of excess returns. In this way, they are naturally linked

to the unconditional Sharpe ratios for each bond. Since factors here are rotated to PCs of

yield shocks, instead of PCs of yield shocks, the effect of level factor on expected returns

varies considerably with maturity. It ranges from 0.196 for one-year bonds to 0.057 for

ten-year bonds. As expected, the effect of slope factor rises almost linearly with maturity.

While investors also require compensation to face the risk that the intermediate-term yields

increases relatively to long-term and short-term yields, its magnitude is very small. Overall,

our results support Duffee (2010)’s and Joslin et al. (2014)’s finding that expected returns

mainly move in response to changes in level and slope factors.

Next, we state investigating whether some constraints should be imposed on the dimen-

sionality of bond risk premia. If we take the earlier result that there is little compensation

earned for exposure to shocks to the third and fourth factors, the dimension of risk-premium

vector cannot exceed two. We firstly form a factor decomposition of model-implied expected

returns by eigenvalue-decomposing their covariance matrix. The result on monthly excess

returns, as shown by the first two numbers in Panel A of Table 10, supports a specification

with two risk-premium variables. In particular, the second “monthly” factor explains 3.9%

of the variance of expected returns. However, the last two entries suggest that annual ex-

cess returns seem captured by a single factor. As discussed in Sec. 3.2, we might tend to
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downweight the monthly result relative to the annual result, since one-monthly real rates

are not included in our model estimation. What makes the results more complicated is that

the leading “monthly return” factor appears far from perfectly correlated to the “annual”

factor. More than 62% of the predictable variation in annual excess returns is orthogonal

to the first “monthly” principal component. When we use the “annual” factor to explain

expected monthly returns, the amount is almost the same.

To further pin down the dimensionality of monthly excess returns, we conduct a likelihood-

ratio test to examine the rank of λ1. The test results are shown in Panel B. The test statistic

lies in the neighborhood of 10% critical value. If the significance level is set to 5%, we can-

not reject the null hypothesis that a one-dimensional state variable is sufficient to describe

variations in Λt. If we adopt the 10% significance level, statistical significance is not attained.

C Effectiveness of Kalman Filter for Inferring the State

Vector

This appendix describes the simulation exercise conducted to assess the effectiveness of

Kalman filter in inferring the true state vector. We simulate 10,000 years of monthly yields

from the estimated model with maturities ranging from one through ten years, and then

apply the Kalman filter to the simulated data (treating the model parameters as known).

In addition to standard filtered estimates P̂t|t, we also obtain smoothed estimates P̂t|T =

E(Pt|{Ỹ1 . . . ỸT}) using the Kalman smoother (Rauch, Striebel, and Tung 1965). It is known

that while the (Kalman) filter performs a real-time inference, the smoother essentially makes

use of the whole sample and thus is expected to produce more accurate estimates of state

factors.

Column 1 (2) in Panel A of Table 11 reports the correlations between the true state factor

and its filtered (smoothed) estimates, for each of the four factors. As expected, correlations

with the filtered estimates are lower than those with the smoothed ones. Importantly, while

correlations for the first and second factors are all higher than 95%, Kalman filter really makes

difference in its accurate estimates of higher-order factors, as indicated by the correlations
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of over 89% (94%) for the third (fourth) factors.28 Interestingly, both Kalman filtering and

smoothing do a better job in inferring the fourth factor than inferring the third factor.

Columns 3 through 5 in Panel A report the explanatory power of the yield curve for the

true state, its filtered estimate, and its smoothed estimate, respectively, for each of the four

factors. Note that the regression R2 is almost 100% for the “level” factor and greater than

91% for the “slope” factor, regardless of the dependent variables used. On the other hand,

the R2 is only about 74% (77%) for the true third (fourth) factor. Being more closely related

to observed yields, both filtered and smoothed estimates produce higher R2s, ranging from

82% to about 86% for the third and fourth factors. Still the 18-24% unexplained portions of

these estimates are clear evidence for the unspanned nature of the third and fourth factors.

Next, we investigate the accuracy of finite-sample estimates produced by the Kalman

filter because in practice, econometricians neither observe thousands years of bond yields nor

perfectly know the true model parameters. We follow a procedure similar to the one used

to generate standard errors of parameter estimates reported in Table 2. In each simulation

trial, after estimating model parameters, Kalman filter and smoother are then applied to get

estimates of the state vector. We can then calculate the correlations between these filtered

(or smoothed) estimates and the simulated, true state factors.

Column 1 (2) in Panel B reports the correlation coefficients averaged over 1,000 simula-

tions for filtered (smoothed) estimates. Note that the magnitudes of these correlations are

generally comparable to those of population-based correlations shown in Panel A. This result

implies that when model parameters are unknown, econometricians can still effectively infer

the state vector by estimating the model with a reasonable, eleven-year sample. Columns 3

and 4 in the panel suggest that in a small sample, a greater portion of higher-order PC risks

are unspanned by bond yields.

28High correlations for the first two factors can be achieved even with a simple singular value decomposition
of the covariance matrix, if the factor rotation is based on principal components of yields.
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Table 1: Summary Statistics on Estimated TIPS and Real Term Structures

(1) (2) (3) (4) (5) (6) (7) (8)

Maturity
(yr)

TIPS Zero Yields Real Zero Yields
Fama-BlissFama-Bliss Svensson GSW

Mean Stdev Mean Stdev Mean Stdev Mean Stdev

1 0.212 1.758 0.224 1.720 −0.116 1.847

2 0.193 1.544 0.209 1.540 0.187 1.529 0.013 1.573

3 0.334 1.433 0.331 1.416 0.321 1.409 0.171 1.405

4 0.473 1.275 0.489 1.329 0.483 1.324 0.342 1.272

5 0.665 1.277 0.656 1.254 0.645 1.253 0.556 1.305

6 0.821 1.210 0.808 1.185 0.797 1.190 0.717 1.198

7 0.952 1.152 0.946 1.123 0.935 1.132 0.862 1.141

8 1.064 1.078 1.069 1.067 1.058 1.078 0.981 1.083

9 1.146 1.006 1.177 1.017 1.167 1.028 1.070 1.008

10 1.213 0.939 1.271 0.973 1.263 0.982 1.121 0.899

This table reports the means and standard deviations of zero yields estimated from quotes on individual
TIPS trading on the last business day of the month from January 2004 to December 2014. Columns under
the “Fama-Bliss” and “Svensson” labels are based on data taken from Thomson Reuters, while statistics
in “GSW” columns are computed by directly using estimates from Gürkaynak, Sack, and Wright (2010).
The last two columns present the results on real yields implied from the Fama-Bliss zero yields on TIPS.
Statistics of the one-year yield are reported for the 2006-2014 subperiod. All reported values are annualized
and in percentages.
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Table 2: Maximum Likelihood Estimates of a Four-Factor GDTSM

Parameter vector
Factor (or PC) Number

1 2 3 4

ΦQ
P 0.858 0.366 1.890 1.669

(0.040) (0.010) (0.080) (0.086)

0.022 0.864 −0.550 −0.546

(0.002) (0.026) (0.028) (0.020)

−0.001 −0.033 0.799 0.017

(0.000) (0.003) (0.034) (0.001)

−0.008 0.016 0.037 1.069

(0.000) (0.000) (0.002) (0.039)

diag(Ω
1/2
P )(×102) 1.170 0.330 0.094 0.013

(0.055) (0.028) (0.004) (0.000)

λ0(×102) −5.578 −1.644 0.000 0.000

(2.579) (1.013) (0.000) (0.000)

λ1l −0.342 −0.238 −1.227 9.946

(0.071) (0.051) (0.224) (1.818)

δ1P 0.538 −1.244 −6.369 −4.637

(0.024) (0.043) (0.732) (0.191)

δ0P(×102) 0.412

(0.078)

ση(×102) 0.022

(0.000)

This table reports the estimate of the parameter vector of a constrained four-factor
GDTSM, whose state vector Pt is normalized to the first four principal components
(PCs) of shocks to the real yield curve. The short rate rt = δ0P + δ′1PPt. The Q-
and P-dynamics of Pt are specified respectively in Eqs. (8) and (10). This GDTSM
is constrained in the sense that the risk premium is specified by Eq. (14) such that
only the first two elements of λ0 and the first row (λ1`) of λ1 are free parameters.
The model is estimated with maximum likelihood and Kalman filter using month-
end real yields on zero-coupon bonds with maturities of one through ten years from
2004 through 2014. These real yields are assumed to have iid measure error with a
standard deviation of ση. Quantities in parentheses are standard errors from 1,000
Monte Carlo simulations, under the null hypothesis that the estimated model is
true. Each simulated data sample is 132 monthly observations of ten bond yields,
with the same maturities as used in model estimation.
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Table 3: Model-Implied Population Moments of Excess Bond Returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Monthly Returns Annual Returns

Model
Mean True Var.

Conditional Variance
Mean True Var.

Conditional Variance

full info 4 PCs Ratio full info 4 PCs Ratio

Panel A: Five-year bonds

FB 4 0.090 0.106 0.017 0.010 0.591 0.936 0.732 0.169 0.102 0.605

[-0.07 0.29] [0.08 0.13] [0.39 0.76] [-0.58 2.27] [0.54 1.10] [0.42 0.81]

SV 4 0.087 0.106 0.011 0.010 0.895 0.898 0.779 0.117 0.105 0.901

FB 3 0.122 0.094 0.010 0.009 0.904 1.065 0.622 0.100 0.081 0.817

FB 2 0.149 0.096 0.009 0.009 0.968 1.449 0.566 0.084 0.080 0.945

Panel B: Ten-year bonds

FB 4 0.102 0.231 0.052 0.031 0.593 1.155 1.041 0.257 0.172 0.669

[-0.05 0.33] [0.19 0.30] [0.40 0.74] [-0.44 2.35] [0.60 1.41] [0.47 0.85]

SV 4 0.099 0.225 0.036 0.031 0.864 1.260 1.013 0.195 0.174 0.891

FB 3 0.127 0.228 0.031 0.029 0.932 1.820 0.803 0.163 0.153 0.942

FB 2 0.175 0.209 0.030 0.028 0.959 1.650 0.730 0.144 0.140 0.975

The constrained four-factor GDTSM is estimated with maximum likelihood and Kalman filter using month-end real yields from 2004 through
2014. Parameter estimates are used to derive population properties of excess returns on a five-year bond (Panel A) and on a ten-year
bond (Panel B). Yield curve fitting models used (column 1) include the Fama and Bliss (1987) and Svensson (1995) models. Columns under
the title “Monthly Returns” report numerical characteristics of one-month log returns obtained by borrowing at the one-month rate, buying a
long-term bond, and selling it in one month. Columns under the title “Annual Returns” show one-year log returns on a five (ten)-year bond
in excess of the log return on a one-year bond. Columns 3 and 8 report the conditional variances of ex post excess returns uncontaminated by
measurement errors. The “Full Info” and “4 PCs” columns quantify the volatility of true conditional expected excess returns attributable to
time-variation in the true state vector and to time-variation in the principal components of cross-sectional yields. All entries in the table are
expressed in percentage points except for variance ratios.
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Table 4: Accuracy of Excess Return Forecasts Based on the Kalman Filter

Monthly Returns Annual Returns

5-Year 10-Year 5-Year 10-Year

Panel A: Population R2s

R2(Pt) - Full Information 0.142 0.182 0.226 0.234

R2(P̂t|t) - Optimal Filtering 0.108 0.137 0.171 0.176

R2(P̂t|T ) - Optimal Smoothing 0.116 0.153 0.182 0.192

R2
ols(P̂t|t) - OLS with Filtered 0.098 0.101 0.175 0.177

R2
ols(P̂t|T ) - OLS with Smoothed 0.133 0.128 0.286 0.247

Panel B: Finite-sample R2s

R̂2(P̂t|t) - Optimal Filtering 0.098 0.118 0.180 0.167

[0.06 0.15] [0.08 0.19] [0.10 0.29] [0.07 0.28]

R̂2(P̂t|T ) - Optimal Smoothing 0.146 0.167 0.217 0.198

[0.10 0.21] [0.10 0.22] [0.12 0.34] [0.07 0.32]

R̂2
ols(P̂t|t) - OLS with Filtered 0.047 0.044 0.290 0.241

[0.05 0.38] [0.04 0.35]

R̂2
ols(P̂t|T ) - OLS with Smoothed 0.052 0.048 0.288 0.230

[0.05 0.38] [0.04 0.34]

Panel C: R2s in the sample

R̃2(P̂t|t) - Optimal Filtering 0.118 0.132 0.289 0.252

R̃2(P̂t|T ) - Optimal Smoothing 0.144 0.178 0.331 0.279

R̃2
ols(P̂t|t) - OLS with Filtered 0.381 0.324

R̃2
ols(P̂t|T ) - OLS with Smoothed 0.383 0.335

This table shows the accuracy of return forecasts conditioning on factor estimated with the Kalman
filter. Rows labeled “Optimal Filtering” and “Optimal Smoothing” present the results based on
model-implied expectations about future excess returns based on filtered and smoothed states. Rows
labeled “OLS with Filtered” and “OLS with Smoothed” report the R2s from predictive regressions
of realized excess returns on estimated state factors. Population results in Panel A are based on
a 10,000-year simulation of state factors and bond yields, where the “true” model parameters are
the ones tabulated in Table 2 and assumed known by econometricians. Results in Panel B are
obtained by simulating 1,000 samples with the same length as the real sample. Maximum likelihood
estimation and Kalman filter are performed for each sample to obtain the finite-sample R2. The R2

ratios shown in each row are the average over the 1,000 samples, with the 951th and 50th largest
ones reported in brackets. Panel C presents the same type of ratios as in Panel B, which are obtained
from the 2004-2014 data sample.
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Table 5: Fitting and Forecasting Performance of Term Structure Models

Model 1-year 2-year 3-year 4-year 5-year 6-year 7-year 8-year 9-year 10-year

Panel A: Cross-sectional

FB 4 3.12 7.85 7.03 12.29 7.47 5.69 5.30 4.64 3.73 6.14

FB 3 3.73 8.12 6.88 19.36 8.56 7.15 6.65 5.02 3.90 9.84

FB 2 3.86 9.54 8.09 20.24 8.97 7.66 7.08 5.09 4.18 10.35

Panel B: One month ahead

FB 4 60.20 44.47 36.49 32.77 30.43 28.60 28.17 25.68 23.54 22.81

FB 3 61.91 46.92 39.43 37.10 30.96 29.41 29.23 27.07 25.49 25.73

FB 2 63.93 48.38 40.77 38.05 32.10 30.49 30.26 28.12 26.30 26.36

Panel C: Six months ahead

FB 4 112.10 82.93 72.46 64.36 65.89 60.04 58.31 54.32 51.14 49.32

FB 3 126.34 97.46 86.15 69.44 72.58 65.79 63.14 58.99 54.40 50.59

FB 2 129.36 99.60 88.25 71.90 74.94 68.53 66.09 62.14 57.56 53.79

Panel D: Twelve months ahead

FB 4 140.59 106.83 93.12 74.87 80.98 76.40 73.60 69.06 64.55 59.99

FB 3 157.54 126.45 113.32 92.60 97.61 91.83 87.53 81.49 74.58 68.06

FB 2 160.38 128.61 115.73 96.73 101.44 96.06 92.15 86.37 79.64 73.17

This table illustrates the pricing performance of three specifications of the constrained GDTSM given in Eqs. (8), (10), and (14): the two-,
three-, and four-factor GDTSMs (denoted respectively FB 2, FB 3, and FB 4). All three models are estimated with maximum likelihood and
Kalman filter, using monthly real bond yields on zero-coupon bonds with maturities of one through ten years from January 2004 through
December 2014. Model performance is measured by the percentage change in root mean squared forecast errors (RMSE), which are calculated
using filtered estimates of the state vector. The performance is examined for four different forecast horizons, including zero (Panel A), one
(Panel B), six (Panel C), and 12 months (Panel D), for each bond maturity. The RMSE is reported in basis points of annualized yields.
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Table 6: Linking Hidden Factors to the Macroeconomy

Panel A: Regressions of expected changes in the short rate on individual hidden factors

Hidden
Factor

Months ahead (j)

1 2 3 4 5 6 7 8 9 10 11 12

Ht -10.63 -10.63 -9.30 -10.37 -10.46 -9.12 -9.82 -9.63 -8.06 -8.63 -7.82 -5.83

(-4.10) (-3.44) (-3.43) (-3.99) (-3.45) (-3.48) (-4.00) (-3.39) (-3.24) (-3.74) (-3.12) (-2.53)

R2 0.255 0.225 0.217 0.236 0.217 0.208 0.217 0.190 0.172 0.179 0.140 0.099

P4,t -6.62 -6.38 -6.76 -6.65 -6.33 -6.66 -6.54 -6.24 -6.48 -6.34 -5.85 -6.16

(-2.73) (-2.37) (-2.77) (-2.56) (-2.30) (-2.62) (-2.55) (-2.35) (-2.61) (-2.51) (-2.44) (-2.94)

R2 0.085 0.083 0.087 0.083 0.081 0.085 0.083 0.081 0.084 0.082 0.080 0.084

Panel B: Univariate regressions of individual hidden factors on macroeconomic variables

Hidden
Factor

Macroeconomic variables

CFNAI-MA3 f̂1 ĝ1 ĝ2 ĝ3 ĝ6 ĝ8 R2

Ht -0.34 0.089

(-2.32)

Ht -0.61 0.314

(-3.52)

Ht -0.34 0.090

(-3.80)

Ht -0.35 0.093

(-3.84)

Ht -0.36 0.103

(-4.05)

Ht -0.38 0.116

(-4.83)

P4,t 0.05 0.003

(0.36)

P4,t 0.01 0.000

(0.12)

P4,t -0.48 0.275

(-9.26)

Panel A reports the results from regressions of survey forecast of three-month real rates onto estimated
hidden factors Ht and P4,t. Monthly observations of expectations of future T-bill yields and inflation
rates are from Blue Chip Financial Forecasts. Regressions are run at a quarterly frequency to ensure
time-invariant forecast horizon. The estimate of contemporaneous three-month yield is subtracted from
the forecasts to produce forecasted changes in the yield. t-statistics based on Newey-West standard errors
with a lag truncation parameter of 4 are shown in parentheses. Panel B displays the explanatory power of
macroeconomic instruments for hidden factors. CFNAI-MA3 denotes the three-month moving average of
the Chicago Fed National Activity Index. {f̂i, i = 1, . . . , 8} denotes static factors extracted by Ludvigson
and Ng (2008) from 131 measures of economic activity and {ĝi, i = 1, . . . , 8} dynamic factors from the same
dataset (Ludvigson and Ng, 2011). The signs of both hidden factors are reversed.
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Table 7: Regressions of Hidden Factors on Observable Liquidity Measures

Hidden Relative Bid-Ask Fitting TIPS-Off InfSwap-BEI Off-On Refcorp
R2 N

Factor Volume Spread Error ASW Spread Spread Spread

Ht −1.05 0.075 132

(−1.18)

Ht −0.09 −0.007 132

(−0.28)

Ht 0.09 0.081 132

(2.11)

Ht −0.46 0.028 90

(−0.61)

Ht −1.02 0.037 129

(−1.54)

Ht −1.11 −0.009 132

(−0.22)

Ht 0.68 0.038 132

(1.98)

Ht −0.49 −0.05 0.01 −0.34 0.11 −4.00 0.39 0.121 90

(−1.19) (−0.41) (0.36) (−1.06) (0.31) (−2.29) (0.67)

P4,t 0.87 0.049 132

(1.24)

P4,t 0.66 0.080 132

(1.81)

P4,t −0.07 0.049 132

(−1.43)

P4,t −0.75 0.077 90

(−1.39)

P4,t −1.25 0.067 129

(−2.08)

P4,t 6.98 0.005 132

(0.79)

P4,t 0.96 0.088 132

(1.10)

P4,t 0.19 0.04 −0.03 −0.70 −0.02 1.97 0.27 0.143 90

(0.57) (0.37) (−0.72) (−2.41) (−0.06) (0.61) (1.12)

This table reports the results from regressions of estimated hidden factors Ht and P4,t onto proxies for
liquidity in the TIPS market. Liquidity proxies, from left to right in the table, include (1) the log ratio of
TIPS trading volumes to nominal securities volume, (2) 10-year TIPS bid-ask spreads, (3) the average TIPS
curve fitting errors, (4) the difference between 10-year TIPS and On-the-Run par nominal ASW spreads, (5)
the difference between the 10-year inflation swap rate and breakeven inflation rate, (6) the spread between
ten-year on- and off-the-run nominal Treasury yields, and (7) the spread between 20-year Refcorp and
Treasury strips t-statistics based on Newey-West standard errors with a lag truncation parameter of 12 are
shown in parentheses. The column labeled “N” reports the number of observations. The signs of both
hidden factors are reversed.
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Table 8: Correction for the Three-Month Indexation Lag of TIPS

Maturity
(yr)

Recursive Estimation Non-Recursive Estimation

VAR(1) VAR(2) VAR(3) VAR(4) VAR(1) VAR(2) VAR(3) VAR(4)

1 0.58 0.79 1.20 1.32 0.59 0.86 1.29 1.34

2 0.58 0.82 1.26 1.38 0.61 0.96 1.52 1.66

3 0.63 0.84 1.20 1.26 0.68 1.04 1.57 1.71

4 0.70 0.87 1.14 1.14 0.76 1.11 1.58 1.69

5 0.76 0.89 1.07 1.04 0.84 1.17 1.56 1.63

6 0.81 0.90 1.01 0.95 0.91 1.21 1.53 1.57

7 0.87 0.91 0.95 0.88 0.96 1.25 1.49 1.50

8 0.91 0.91 0.90 0.81 1.01 1.27 1.44 1.43

9 0.95 0.91 0.85 0.76 1.05 1.28 1.40 1.36

10 0.98 0.91 0.81 0.71 1.08 1.28 1.35 1.29

This table reports corrections for the indexation lag of TIPS. They are based on estimates of γt(m),
defined as Covt(it+m − it, p$t+m(3)), where it+m − it is the log change in the price level from time t to

time t + m, and p$t+m(3) is the log of prices at time t + m for a nominal bond maturing in 3 months.
The estimate of γt(m) is computed as

γt(m) = ι′1

 τ∑
i=1

Am−i

 i∑
j=1

Ai−jV (et+j |xt)Ai−j,
 ι2,

where ιi is the selection vector such that ∆it = ι′1xt and p
$(l)
t = ι′2xt; A is the coefficient matrix of a

VAR model for xt defined in Eq. (27); V (et+j |xt), ∀j > 0 are innovation variances of xt. VAR models
with lags of 1 through 4 are used in the estimation. Estimates of γt(m) are obtained both recursively
with expanding windows (the first four columns) and non-recursively using the entire sample (the last
four columns). The first four columns report the mean of all estimates from January 2004 to December
2014. Multiplying γt(m) by −120000/m produces the correction to the real annual yields in basis points.
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Table 9: Sample and Model-Implied Sharpe Ratios

Panel A: TIPS unconditional Sharpe ratios

Portfolio
Nominal Returns Real Returns

Mean Std Sharpe Ratio Mean Std Sharpe Ratio

1-5yr 0.198 0.853 0.232 0.133 0.483 0.276

5-10yr 0.301 1.708 0.177 0.315 1.767 0.178

> 10yr 0.385 1.869 0.206 0.393 2.113 0.186

Panel B: Model-implied Sharpe ratios

Bond Market Fixed-Income Market Conditional Maximum Ratios

Model Unconditional Population Sample

Maximum Ratios Simple Returns Log Returns Simple Returns Log Returns

Unconstrained 0.759 1.619 0.918 1.701 0.924

Constrained 0.208 0.316 0.296 0.313 0.302

Preferred 0.198 0.374 0.306 0.384 0.271

Panel C: Decomposition of unconditional Sharpe ratios

Bond Maturity
Factor

1 2 3 4

1yr 0.196 −0.102 0.025 0.002

2yr 0.162 −0.034 −0.011 −0.003

5yr 0.110 0.036 −0.004 0.001

10yr 0.057 0.062 0.014 −0.005

Panel A shows unconditional moments and Sharpe ratios of excess TIPS returns at a monthly horizon.
The sample period spans from Jananury 1997 to December 2014. Nominal returns are computed with the
principal amount adjusted for changes in CPI. Model-implied Sharpe ratios are listed in Panel B. The second
column shows the unconditional maximum Sharpe ratio in a hypothetical bond market that contains 120
zero-coupon bonds with maturities from 1 to 120 months. The remaining columns reports sample and
population means of conditional maximum Sharpe ratios. Sample means are based on state variable values
filtered from the estimated model, and population means are calculated using Monte Carlo simulations.
Panel C shows the components of unconditional Sharpe ratios corresponding to the average compensations
investors require to face PC risks.

52



Table 10: The Dimensionality of Risk Premia

Panel A: Eigenvalue-decomposition of the covariance matrix of expected excess returns

Expected Fraction Explained by

Excess “Monthly Factors” “Annual Factors”

Returns 1st 2nd 1st 2nd

Monthly 0.957 0.039 0.372 0.160

Annual 0.374 0.237 0.985 0.015

Panel B: Likelihood Ratio Tests

H0: rk(λ1) = 1 H0: Eq. (14)

log La log L0 stat χ2(9) p-value log L0 stat χ2(14) p-value

49.437 49.372 14.868 0.095 49.264 39.517 3.0× 10−4

Panel A shows the properties of model-implied principal components of the covariance matrix of conditional
expected excess monthly / annual returns on a set of bonds. The maturities of bonds involved in the principal
component decomposition range from 2 years to 10 years. For each decomposition, only the first two principal
components are extracted. Panel B reports the results of likelihood ratio tests. The null hypothesis in the
first test is that the one-period expected excess returns lie in a one-dimensional space. The second test
examines the fourteen zero restrictions imposed in Eq. (14).
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Table 11: Model-Implied Properties of State Factors Estimated with the Kalman
Filter

(1) (2) (3) (4) (5)

Factor No.

Correlation of Individual
True State Factors with

R2 of Regressions on the Yield Curve

Dependent variable used

Filtered Smoothed True Filtered Smoothed

Estimates Estimates Factor Estimates Estimates

Panel A: Population properties of state factors

1 0.993 0.993 0.995 0.999 0.999

2 0.958 0.974 0.928 0.942 0.911

3 0.891 0.920 0.766 0.858 0.830

4 0.943 0.967 0.738 0.834 0.821

Panel B: Finite-sample properties of state factors

1 0.990 0.990 0.991 0.999 0.999

2 0.904 0.938 0.802 0.836 0.896

3 0.812 0.858 0.685 0.764 0.847

4 0.919 0.941 0.747 0.761 0.826

This table reports the population properties (Panel A) and finite-sample properties (Panel B) of
filtered and smoothed estimates of state factors. Population properties of the Kalman filter are
proxied by simulating 10,000 years of state factors and bond yields, where the “true” model is
the model estimated with maximum likelihood. Finite-sample results are based on 1,000 samples
generated by the estimated model. Each sample consists of 132 months of bond yields, with
the maturities of one through ten years. Column 1 (2) shows the correlation of the true state
vector with its filtered (smoothed) estimate. The last three columns report the R2 of three sets
of regressions on contemporaneous values of all ten noise-contaminated bond yields, where the
dependent variable used is respectively the true state vector (column 3), its filtered estimate
(column 4), and the smoothed estimate of the true state vector (column 5).
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Figure 1: Real, Nominal and TIPS Yields of Ten-Year Zero-Coupon Bonds
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This figure plots the real, nominal, and TIPS yields for ten-year zero-coupon bonds over the period from
January 2004 to December 2014. TIPS zero yields are constructed using the Fama-Bliss method. Real zero
yields are TIPS zero yields corrected for the indexation lag.
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Figure 2: Estimated Loadings of Annualized Real Yields on Real Term Structure
Factors
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The constrained four-factor GDTSM is estimated with maximum likelihood and Kalman filter, using month-
end real yields from 2004 through 2014. The state vector is normalized to principal components of shocks to
the yield curve. The triangles represent coefficients from regressions of the constructed real yields on filtered
estimates of the state . The dotted lines are two-sided 95% confidence intervals calculated from 1,000 Monte
Carlo simulations.
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Figure 3: Predictability of Annual Excess Returns in the 2004-2014 Sample
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This figure exhibits the (adjusted) R2s for predictive regressions of annual excess bond returns on risk factors
extracted from estimated term structure models or from cross-sectional bond yields. Four different GDTSMs
are estimated using monthly real bond yields from January 2004 through December 2014: a constrained
four-factor model, a constrained three-factor model, a constrained two-factor model and an unconstrained
four-factor model. The red line in the first panel shows the R2s based on the first four principal components
of the yield curve. The cyan line in the second panel shows the adjusted R2s based on the single risk-
premium factor, λ′1lPt, filtered from the constrained four-factor model. The blue dashed lines in both panels
are two-sided 95% confidence intervals for regressions on four filtered factors extracted from the constrained
model.
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Figure 4: Model-Implied Effects of Hidden Factors
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B. Expected monthly excess returns
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D. Expected one-year rates

Effects of the “annual” hidden factor P4,t
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F. Expected annual excess returns

This figure exhibits the model-implied effects of hidden factors on the yield curve, on future short rates
and on expected excess returns, scaled by their standard deviations. The model is estimated using monthly
real bond yields from January 2004 through December 2014, with restrictions imposed on the market price
of risk. Ht denotes the hidden part of the single risk-premium factor λ′1lPt, which drives all variations in
expected monthly excess returns. It is constructed as the residual from projecting λ′1lPt on the four principal

components of observed yields P̃t. P4,t is the fourth state factor based on principal components analysis of
the covariance matrix of shocks to yields. The signs of both hidden factors are reversed.
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Figure 5: Significance of Filtered State Factors in Predictive Regressions of
Annual Excess Returns

Panel A: t-statistics based on Hansen-Hodrick standard errors
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Panel B: t-statistics based on Newey-West standard errors
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This figure exhibits the t-statistics in predictive regressions of annual excess bond returns on state factors
filtered from estimated a four-factor GDTSM. The model is estimated using monthly real bond yields from
January 2004 through December 2014. The factors are rotated into the principal components of the covari-
ance matrix of yield innovations. The solid line in each panel shows the multivariate regression coefficients
divided by Hansen-Hodrick standard errors or Newey-West standard errors. The dotted lines represent
two-sided 95% confidence intervals calculated from 1,000 Monte Carlo simulations.
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Figure 6: Estimated Three-Month Real Rates
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This figure plots the ex post and ex ante (annualized) real returns on 3-month Treasury bills. The sample
period extends from January 2004 to December 2014.
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DAmico, S., W. English, D. López-Salido, and E. Nelson (2012). The federal reserve’s large-
scale asset purchase programmes: Rationale and effects. The Economic Journal 122 (564),
F415–F446.

D’Amico, S., D. H. Kim, and M. Wei (2014). Tips from tips: the informational content of
treasury inflation-protected security prices. Working Paper, Federal Reserve.

Duffee, G. (2010). Sharpe ratios in term structure models. Working paper, Johns Hopkins
University.

61



Duffee, G. (2011). Information in (and not in) the term structure. Review of Financial
Studies 24 (9), 2895–2934.

Evans, M. (1998). Real rates, expected inflation, and inflation risk premia. Journal of
Finance 53 (1), 187–218.

Fama, E. and R. Bliss (1987). The information in long-maturity forward rates. American
Economic Review 77, 680–692.

Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and
bonds. Journal of Financial Economics 33 (1), 3–56.

Grishchenko, O. and J.-Z. Huang (2013). Inflation Risk Premium: Evidence from the TIPS
Market. Journal of Fixed Income 22 (4), 5–30.

Gürkaynak, R., B. Sack, and J. Wright (2007). The US Treasury yield curve: 1961 to the
present. Journal of Monetary Economics 54 (8), 2291–2304.

Gürkaynak, R., B. Sack, and J. Wright (2010). The tips yield curve and inflation compen-
sation. American Economic Journal: Macroeconomics 2 (1), 70–92.

Haubrich, J., G. G. Pennacchi, and P. Ritchken (2012). Inflation expectations, real rates, and
risk premia: Evidence from inflation swaps. Review of Financial Studies 25 (5), 1588–1629.

Huang, J.-Z. and Z. Shi (2010). Determinants of Bond Risk Premia. AFA 2011 Denver
Meetings Paper . Penn State University.

Huang, J.-Z. and Z. Zhong (2013). Time-variation in diversification benefits of commodity,
reits, and tips. Journal of Real Estate Finance and Economics 46 (1), 152–192.

Joslin, S., M. Priebsch, and K. J. Singleton (2014). Risk premiums in dynamic term structure
models with unspanned macro risks. Journal of Finance 69 (3), 1197–1233.

Joslin, S., K. J. Singleton, and H. Zhu (2011). A new perspective on gaussian dynamic term
structure models. Review of Financial Studies 24 (3), 926–970.

Le, A. and K. Singleton (2013). A robust analysis of the risk-structure of equilibrium term
structures of bond yields. Working Paper, Kenan-Flagler Business School, UNC .

Ludvigson, S. and S. Ng (2008). Macro factors in bond risk premia. Review of Financial
Studies 22, 5027–5067.

Ludvigson, S. and S. Ng (2011). A factor analysis of bond risk premia. In A. Ullah and
D. E. A. Giles (Eds.), Handbook of Empirical Economics and Finance, pp. 313–372. CRC
Press.

Nelson, C. and A. Siegel (1987). Parsimonious modeling of yield curves. Journal of Business ,
473–489.

62



Pflueger, C. and L. Viceira (2010). An Empirical Decomposition of Risk and Liquidity
in Nominal and Inflation-Indexed Government Bonds. Working Paper 11-094, Harvard
Business School .

Pflueger, C. and L. Viceira (2011). Inflation-Indexed Bonds and the Expectations Hypothesis.
Annual Review of Financial Economics 3, 139–158.

Piazzesi, M., M. Schneider, and S. Tuzel (2007). Housing, consumption and asset pricing.
Journal of Financial Economics 83 (3), 531–569.

Rauch, H. E., C. Striebel, and F. Tung (1965). Maximum likelihood estimates of linear
dynamic systems. AIAA journal 3 (8), 1445–1450.

Roll, R. (2004). Empirical TIPS. Financial Analysts Journal , 31–53.

Roush, J. E. (2008). The “growing pains” of TIPS issuance. Divisions of Research &
Statistics and Monetary Affairs, Federal Reserve Board.

Shen, P. (2006). Liquidity risk premia and breakeven inflation rates. Economic Review-
Federal Reserve Bank of Kansas City 91 (2), 29.

Stock, J. H. and M. W. Watson (1999). Forecasting inflation. Journal of Monetary Eco-
nomics 44 (2), 293–335.

Svensson, L. E. (1995). Estimating forward interest rates with the extended nelson & siegel
method. Sveriges Riksbank Quarterly Review 3 (1), 13–26.

63


	Introduction
	Data
	Data on TIPS and Real Yields
	Construction of the Fama-Bliss Real Yield Curve
	From TIPS Yields to Real Yields

	Survey Data

	Dynamic Term Structure Models with Real Yields
	The Modeling Framework
	The Structure of Expected Excess Returns
	Model Estimation
	Population Properties of Expected Excess Returns
	Inferring the State Vector from Yield Dynamics
	Population R2
	Finite-Sample R2
	R2 in the sample

	Sample Properties of Alternative GDTSMs

	Extracting Hidden Factors
	The Hidden Factor Driving Monthly Excess Returns
	The Fourth Factor Being An ``Annual" Hidden Factor
	Economic Interpretation of Hidden Factors
	Evidence from Surveys
	Hidden Factors and Macroeconomic Variables
	Hidden Factors and Illiquidity


	Conclusion
	Construction of Real Zero-Yield Curves
	Estimation of TIPS Indexation Lag Correction
	Estimation of the Three-Month Real Rate

	Restrictions on Risk Premia Dynamics
	Effectiveness of Kalman Filter for Inferring the State Vector

