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Abstract
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about the shape of the Treasury yield curve. Our model reveals that, over the
period 1985–2007, these unspanned macro risks accounted for a large portion
of the variation in forward terms premiums, and there was pronounced cyclical
variation in the market prices of level and slope risks. We compare fitted term
premiums for the post-2007 crisis period to those from a model with spanned
macro risks, and use our findings to reassess some of Chairman Bernanke’s
remarks on the interplay between term premiums, the shape of the yield curve,
and the macroeconomy.

∗We are grateful for feedback from seminar participants at MIT, Stanford University, the
University of Chicago, the Federal Reserve Board and Federal Reserve Bank of San Francisco, the
International Monetary Fund, the Western Finance Association (San Diego) and for comments from
Greg Duffee, Patrick Gagliardini, Imen Ghattassi, Monika Piazzesi, Oreste Tristani, and Jonathan
Wright. An earlier version of this paper circulated under the title “Risk Premium Accounting in
Macro-Dynamic Term Structure Models.”
†University of Southern California, Marshall School of Business, sjoslin@usc.edu
‡Federal Reserve Board, marcel.a.priebsch@frb.gov. The analysis and conclusions set forth

in this paper are those of the authors and do not indicate concurrence by other members of the
research staff or the Board of Governors of the Federal Reserve System.
§Stanford University, Graduate School of Business, and NBER, kenneths@stanford.edu

1



1 Introduction

A powerful implication of virtually all macro-finance affine term structure models
(MTSMs)—reduced-form and equilibrium alike—is that the macro factors that
determine bond prices are fully spanned by the current yield curve.1 That is, the
affine mapping between bond yields and the risks in the macroeconomy in these
models can be inverted to express these risk factors as linear combinations of yields.
This theoretical macro-spanning condition implies strong and often counterfactual
restrictions on the joint distribution of bond yields and the macroeconomy, as well as
on how macroeconomic shocks affect term premiums.

Consider for instance an MTSM in which the macro variables Mt that directly
determine bond yields are output growth and inflation. Macro spanning implies that
these macro variables can be replicated by portfolios of bond yields. As a result, after
conditioning on the current yield curve, macro variables are uninformative about both
expected excess returns (risk premiums) and future values of M . The first of these
restrictions on the joint distribution of M and bond yields is contradicted by the
evidence in Cooper and Priestley (2008) and Ludvigson and Ng (2010). The second is
contradicted by a large body of evidence on forecasting the business cycle (Stock and
Watson (2003)). Both restrictions are strongly rejected statistically in our dataset.

There is an equally compelling conceptual case for relaxing macro spanning.
The first three principal components (PCs) of bond yields—the level, slope, and
curvature—explain almost all of the variation in yields, and this fact motivates the
small number of risk factors in reduced-form MTSMs.2 Real economic growth in
the U.S. economy is a distinct agglomeration of a high-dimensional set of risks from
financial, product, and labor markets. The yield PCs are correlated with output
growth, but the natural premise in economic modeling is surely that the portfolio of
risks that shape growth are not spanned by the PCs of U.S. Treasury yields. In fact,
in our data, only about 30% of the variation in output growth is spanned by even the
first five PCs of yields.

In this paper we develop a family of reduced-form Gaussian MTSMs that allows
for macroeconomic risks to be unspanned by the yield curve and, thereby, introduces

1 Reduced-form models that enforce theoretical spanning include Ang and Piazzesi (2003), Ang,
Dong, and Piazzesi (2007), Rudebusch and Wu (2008), Ravenna and Seppala (2008), Smith and
Taylor (2009), and Bikbov and Chernov (2010). In many equilibrium models with long-run risks
(e.g., Bansal, Kiku, and Yaron (2012a), Bansal and Shaliastovich (2013)) it is expected consumption
growth and expected inflation that are spanned by yields.

2See Litterman and Scheinkman (1991)), Dai and Singleton (2000), and Duffee (2002) for
supporting evidence. Ang, Piazzesi, and Wei (2006) and Bikbov and Chernov (2010), among others,
draw explicitly on this evidence when setting the number of their risk factors.

2



macroeconomic risks that are distinct from PC (yield curve) risks. Central to the
construction of our MTSM are the assumptions that the pricing kernel that investors
use when discounting cash flows depends on a comprehensive set of priced risks Zt
in the macroeconomy, and the short-term Treasury rate is an affine function of a
smaller set of “portfolios” of these risks Xt (consistent with the evidence that a small
number of PCs explain most of the variation in the cross section of yields). We then
construct a Treasury-market specific stochastic discount factor MX such that: (i)
MX prices the entire cross section of Treasury bonds; (ii) MX has market prices of
X risks that may depend on the entire menu of macro risks Z; (iii) the model-implied
yields do not span Z; and (iv) MX does not price all of these macro risks. In this
manner we accommodate much richer dynamic co-dependencies among risk premiums
and the macro economy than in extant MTSMs.

Specializing to a setting where Mt is comprised of measures of output growth
and expected inflation, we document economically large effects of the unspanned
components of Mt on risk premiums in Treasury bond markets. Illustrative of our
findings are the “in-two-years-for-one-year” forward term premiums FTP 2,1

t displayed
in Figure 1. The premiums from our preferred model with unspanned macro risks
(Mus) show a pronounced cyclical pattern with peaks during recessions (the shaded
areas), and a trough during the period Chairman Greenspan labeled the “conundrum.”
Notably, there are systematic differences between FTP 2,1 from model Mus and the
projection of FTP 2,1 onto the PCs of bond yields (PMus). These differences arise
entirely from our accommodation of macro shocks that are unspanned by yields.
Unspanned macro risks have their largest impacts on FTP 2,1 during the peaks and
troughs of business cycles, as well as during the conundrum period.

Enforcing macro spanning within a MTSM (constraining Mus and PMus to be
identical) can lead to highly inaccurate model-implied risk premiums. Consider, for
instance, the fitted FTP 2,1 (Mspan) from the MTSM that (incorrectly) constrains
expected output growth and inflation to be spanned by the yield PCs. Both PMus

andMspan are exact linear combinations of yield PCs. Yet their differences are often
huge, with Mspan often declining when PMus is increasing. We subsequently use
these implied premiums to reassess recent interpretations of the interplay between
term premiums, the shape of the yield curve, and macroeconomic activity, including
those of Chairman Bernanke.3

While the extant literature is vast, we are unaware of prior research that explores
the relationship between unspanned macro shocks and risk premiums in bond markets

3See, for example, his speech before the Economic Club of New York on March 20, 2006 titled
“Reflections on the Yield Curve and Monetary Policy.” His talks draw explicitly on the model
estimated by Kim and Wright (2005), and their model is nested in our canonical model.
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Figure 1: The “in-two-years-for-one-year” forward term premiums FTP 2,1
t , defined as

the difference between the expectation for two years in the future of the one-year yield,
and the forward rate that one could lock in today for a one-year loan commencing in
two years. We plot FTP 2,1

t implied by our preferred model with unspanned macro
risks (Mus), the projection of FTP 2,1 from model Mus onto the first three PCs of
bond yields (PMus), and the FTP 2,1 implied by the nested model that enforces
spanning of expectations of the macro variables by the yield PCs (Mspan).

within arbitrage-free pricing models. Independently, Duffee (2011) proposes a latent
factor (yields-only) model for accommodating unspanned risks in bond markets.4

We formally derive a canonical form for MTSMs with unspanned information that
affects expected excess returns, and provide a convenient normalization that ensures
econometric identification. Moreover, as we illustrate, the global optimum of the
associated likelihood function is achieved extremely quickly. Wright (2011) and
Barillas (2011) use our framework to explore the effects of inflation uncertainty on
bond market risk premiums using international data, and optimal bond portfolio
choice in the presence of macro-dependent market prices of risk, respectively.

The remainder of this paper is organized as follows. Section 2 reviews the modeling
choices made in the current generation of MTSMs, and argues that these models

4Duffee (2011) does not explore the econometric identification of such a model, nor does he
empirically implement a dynamic term structure model with unspanned risks.
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enforce strong and counterfactual restrictions on how the macroeconomy affects yields.
Section 3 then proposes a canonical MTSM with unspanned macro risks that takes
a large step towards bringing MTSMs in line with the historical evidence. The
associated likelihood function is derived in Section 4. Our formal estimation and the
model-implied risk premiums on exposures to “level” and “slope” risks are presented
in Section 5. The properties of risks premiums in our MTSM are explored in more
depth in Section 6 by examining the links between macroeconomic shocks and the
time-series properties of forward term premiums. There we elaborate on Figure 1,
as well as counterparts for longer-dated forward term premiums. In Section 7, we
document that unspanned macro risks had economically significant effects on the
shape of the forward premium curve. Section 8 elaborates on the structure of our
MTSM and explores the robustness of our empirical findings to extending our sample
well into the current crisis period. In Section 9, we consider several extensions. Finally,
Section 10 concludes.

2 Empirical Observations Motivating Our MTSM

Consider an economic environment in which agents value nominal bonds using the
stochastic discount factor

MZ,t+1 = e−rt−
1
2

Λ′ZtΛZt−Λ′Ztη
P
t+1 ; (1)

the R × 1 state-vector Zt encompasses all risks in the economy. Suppose that Zt
follows the Gaussian process5

Zt = KP
0Z +KP

1ZZt−1 +
√

ΣZη
P
t ηPt ∼ N(0, I); (2)

the market prices ΛZt of the risks ηPt+1 are affine functions of Zt; and the yield on a
one-period bond rt is an affine function of Zt,

rt = ρ0Z + ρ1Z · Zt. (3)

Bond prices are then computed with standard recursions; see Appendix A. This
formulation encompasses virtually all of the Gaussian MTSMs in the literature.

Perhaps the most salient feature of these MTSMs is that Zt includes a set of
macro risk factors Mt, typically measures of output growth and inflation (for examples,

5Our analysis easily extends to the case where (2) is the companion form of a high-order vector-
autoregressive (V AR) representation of Z. Below we provide empirical evidence supporting our
assumption that Z follows a first-order V AR with nonsingular ΣZ .
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see the references in footnote 1). Joslin, Le, and Singleton (2013) (JLS) show that,
for such choices of Zt, except in degenerate cases, (1)-(3) is theoretically equivalent
to a MTSM in which Zt is normalized to the first R PCs of bond yields, denoted by
P , so that

rt = ρ0P + ρ1P · Pt; (4)

and Mt is related to Pt through the macro-spanning restriction

Mt = γ0 + γ1P · Pt. (5)

Thus, the only feature of extant MTSMs that differentiates them from term structure
models with no macro risk factors and rt specified as in (4) (Duffee (2002), Joslin,
Singleton, and Zhu (2011) (JSZ)) is the restriction (5) that Mt is spanned by Pt.

To motivate the specification of our canonical MTSM , we highlight the three
observations that challenge the empirical plausibility of this family of MTSMs. First,
output, inflation, and other macroeconomic risks are not linearly spanned by the
information in the yield curve. Second, the unspanned components of many macro
risks have predictive power for excess returns (risk premiums) in bond markets, over
and above the information in the yield curve. Third, the cross section of bond yields
is well described by a low-dimensional set of risk factors.

Macroeconomic Risks Are Unspanned by Bond Yields
For our subsequent empirical analysis, we include measures of real economic

activity (GRO) and inflation (INF ) in Mt. GRO is measured by the three-month
moving average of the Chicago Fed National Activity Index, a measure of current
real economic conditions.6 INF is measured as the expected rate of inflation over
the coming year as computed from surveys of professional forecasters by Blue Chip
Financial Forecasts.7 We make the parsimonious choice of M ′

t = (GROt, INFt) as
these risks have received the most attention in prior studies.8

6 The Federal Reserve Bank of Chicago constructs the CFNAI from economic indicators from
the categories: production and income (23 series), employment and hours (24 series), personal
consumption and housing (15 series), and sales, orders, and inventories (23 series). The data is
inflation adjusted. The methodology used is similar to that used by Stock and Watson (1999) to
construct their index of real economic activity, and it is also related to the PCs of economic activity
used by Ludvigson and Ng (2010) to forecast excess returns in bond markets.

7The CFNAI for a specific month is first published during the following calendar month, and
subject to revisions. The Blue Chip forecasts are available in real time subject only to at most a
few days’ lag.

8Ang et al. (2006) and Jardet, Monfort, and Pegoraro (2011) focus on models with GROt being
the sole macro risk. Kim and Wright (2005) explore MTSMs with expected inflation being the sole
macro risk. Bikbov and Chernov (2010) and Chernov and Mueller (2012) examine models with
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As evidence on the macro-spanning condition (5), consider the projection of GRO
and INF onto the PCs of yields on U.S. Treasury nominal zero-coupon bonds with
maturities of six months and one through five, seven, and ten years.9 The projection
of GRO onto the first three PCs gives an (adjusted) R2 of 15%, so about 85% of the
variation in GRO arises from risks distinct from P3′

t = (PC1, PC2, PC3). Adding
PC4 and PC5 as regressors only raises the R2 for GRO to 32%. The comparable
R2’s for INF are 83% (P3) and 86% (P5).

Macro Risk Factors Forecast Bond Excess Returns
Not only is Mt unspanned by P3

t , but the projection error OMt = Mt−Proj[Mt|P3
t ]

has considerable predictive power for excess returns, over and above P3. For instance,
consider the one-year holding period returns on two-year and ten-year bonds, xr2

t+12

and xr10
t+12. The adjusted R2 from the projection of xr2

t+12 (xr10
t+12) onto P3

t is 0.14
(0.20), while onto {P3

t , GROt, INFt} it is 0.48 (0.37).10 If we project the excess
returns onto P5

t , the adjusted R2 drop to 0.27 and 0.22.11

Bond Yields Follow a Low-Dimensional Factor Model
Another salient feature of the yield curves in most developed countries is that

the cross section of bond yields is well described by a low-dimensional factor model.
Often three or four factors explain nearly all of the cross-sectional variation in yields.

These empirical observations highlight an inherent tension in MTSMs that
enforce versions of the spanning condition (5), one that likely compromises their
goodness-of-fits and the reliability of their inferences about the dynamic relationships
between macro risks and the yield curve. In particular, JLS show that, for the typical
case of R = 3 and M ′

t = (GROt, INFt) measured perfectly, canonical MTSMs
fit individual yields poorly, with pricing errors exceeding 100 basis points in some
periods. Furthermore, adding measurement errors on Mt leads the likelihood function
to effectively drive out the macro factors leaving filtered risk factors that more closely

M ′t = (GROt, INFt). Only Chernov and Mueller (2012) relax the macro-spanning constraint by
allowing expected inflation to be unspanned by real yields; our framework is substantially more
general in that we allow arbitrary factors to be unspanned by either the real or nominal yield curve.

9The zero curves for U.S. Treasury series are described in more depth in Le and Singleton (2013).
The zero curves are constructed using the same bond selection criteria as in the Fama-Bliss data
used in many previous studies. Importantly, we are using a consistent series out to ten years to
maturity, and throughout our sample period.

10The descriptive analysis in Cieslak and Povala (2010) provides complementary evidence that
the unspanned component of inflation has substantial predictive content for excess returns in bond
markets. Our modeling framework allows the accommodation of their findings within a MTSM .

11If we restrict our sample to end in 2003, as in Cochrane and Piazzesi (2005), the adjusted R2

for projecting xr2t+12 and xr10t+12 onto P5
t are 0.28 and 0.30, respectively
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resemble P3
t . In light of this evidence, it seems doubtful that low-dimensional factor

models in which macro variables comprise half or more of the risk factors provide
reliable descriptions of the joint dynamics of macro and yield curve risks.

Expanding the number of risk factors (increasing R) mitigates the fitting problem
for bond yields, but at the expense of over-parameterizing the risk-neutral distribution
of Zt. The consequent over-fitting of MTSMs is material: both Duffee (2010) and JSZ
document that model-implied Sharpe ratios for certain bond portfolios are implausibly
large when R is as low as four. This problem is likely to be exacerbated in MTSMs,
since an even larger R (relative to yields-only models) may be needed to accurately
price individual bonds.

We overcome these problems by specifying a canonical MTSM with the following
fitting properties:

FP1: the number of risk factors is small (three in our empirical implementation);

FP2: the macroeconomic risks are unspanned by bond yields; and

FP3: the unspanned components of Mt have predictive content for excess returns.

We show that all of these features arise naturally from the projection of agents’
economy-wide pricing kernel onto the the set of risk factors that characterize the
cross-sectional distribution of Treasury yields. That is, taking as given the low-
dimensional factor structure of bond yields FP1, features FP2 and FP3 are direct
consequences of agents’ attitudes towards risks in the broader economy.

3 A Canonical Model with Unspanned Macro Risks

Consistent with FP1, suppose that a low-dimensional R-vector of portfolios of risks
determines the one-period bond yield rt according to (4). At the same time, let us
generalize the generic pricing kernel (1)-(2) to the one capturing the N > R economy-
wide risks Zt underlying all tradable assets available to agents in the economy.
Conceptually, the dimension reduction from N to R (from Z to P) in (4), implied
by FP1, could arise because the economy-wide risks underlying MZ impinge on
bond yields only through the R portfolios of risks P. Alternatively, N > R could
arise because certain risks in ηPt (e.g., cashflow risks in equity markets) are largely
inconsequential for the pricing of Treasury bonds. In either case, Pt and Zt will in
general be correlated, but Zt will not be deterministically related to Pt.
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Most MTSMs are designed to price zero-coupon bonds in a specific bond market12

and, as such, their pricing kernels are naturally interpreted as projections of the
economy-wide MZ onto the portfolios of risks Pt that specifically underlie variation
in bond yields. Pursuing this logic in a notationally parsimonious way, we suppose
that the macro risks of interest Mt “complete” the state vector in the sense that
(P ′t,M ′

t) and Zt represent linear rotations of the same N risks.13 Then, to construct
our bond-market specific MP,t+1, we project MZ,t+1 onto Pt+1 (the priced risks in
the bond market) and Zt (the state of the economy) to obtain:

MP,t+1 ≡ Proj
[
MZ,t+1

∣∣Pt+1, Zt
]

= e−rt−
1
2

Λ′PtΛPt−Λ′Ptε
P
P,t+1 . (6)

Though (6) resembles the kernels in previous studies with spanned macro risks,
there are several crucial differences. The risks εPP,t+1 in (6) are the first R innovations
from the unconstrained V AR[

Pt
Mt

]
=

[
KP

0P
KP

0M

]
+

[
KP
PP KP

PM
KP
MP KP

MM

] [
Pt−1

Mt−1

]
+
√

ΣZε
P
Zt, (7)

where εPZt ∼ N(0, IN), the N ×N matrix ΣZ is nonsingular, and ΣPP is the upper
R × R block of ΣZ . Accordingly, consistent with features FP2 and FP3, Mt is not
deterministically spanned by Pt and forecasts of P are conditioned on the full set of
N risk factors Zt.

14

To close our model, we assume that Pt follows an autonomous Gaussian V AR
under the pricing (risk-neutral) distribution Q:

Pt = KQ
0P +KQ

PPPt−1 +
√

ΣPPε
Q
Pt. (8)

Under these assumptions and the absence of arbitrage opportunities, the yield on an
m-period bond, for any m > 0, is an affine function of Pt,

ymt = AP(m) +BP(m) · Pt, (9)

12Two exceptions are the reduced-form equity and bond pricing models studied by Lettau and
Wachter (2011) and Koijen, Lustig, and van Nieuwerburgh (2012). These models raise spanning
issues as well. For instance, the Koijen et al. (2012) model implies that the value-weighted return
on the NY SE is a linear combination of three PCs of bond yields.

13Our key points are easily derived for the case where Zt includes more risks than those spanned
by (P ′t,M ′t). Also, implicit in our construction is the assumption that N −R elements of Mt are
unspanned by the yield portfolios Pt.

14In this respect, (7) is very similar to the descriptive six-factor model studied by Diebold,
Rudebusch, and Aruoba (2006). As in their analysis, we emphasize the joint determination of the
macro and yield variables. We overlay a no-arbitrage pricing model with unspanned macro risk in
order to explore their impact on risk premiums in bond markets.
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where the loadings AP(m) andBP(m) are known functions of the parameters governing
the Q distribution of yields (see Appendix A). Without loss of generality, we rotate
the risk factors so that P corresponds to the first R PCs of yields.15

The market prices of risk in (6),

ΛP(Zt) = Σ
−1/2
PP

(
µP
P(Zt)− µQ

P(Pt)
)
, (10)

are constructed from the drift of Pt under P (obtained from (7)) and the drift of Pt
under Q (obtained from (8)). They are affine functions of Zt, even though the only
(potentially) priced risks in Treasury markets are Pt. Thus, agents’ risk tolerance is
influenced by information broadly about the state of the economy. It follows that
agents’ pricing kernel cannot be represented in terms of Pt alone. Furthermore, our
framework implies that the residual OMt in the linear projection

Mt = γ0 + γ1P · Pt +OMt (11)

is informative about the primitive shocks impinging on the macroeconomy and,
therefore, about risk premiums and future bond yields.

In contrast, the spanning condition (5) (i.e., supposing that the unspanned macro
risks OMt in (11) is identically zero) adopted by the vast majority of MTSMs
presumes that OMt is identically zero. Economic environments that maintain this
constraint have the property that all aggregate risk impinging on the future shape
of the yield curve can be fully summarized by the yield PCs Pt. In particular, the
spanning condition implies that the past history of Mt is irrelevant for forecasting
not only future yields, but also future values of M , once one has conditioned on Pt.
It follows that MTSMs that enforce spanning fail to satisfy fitting properties FP2
and FP3.

Not only might there be important effects of OMt on expected excess returns, but
the market prices of spanned macro risks may well be affected by OMt. In particular,
the market price of spanned inflation risk, an easily computable linear combination of
the market prices of the PC risks ΛP(Zt), may be very different from its counterpart
in a model that assumes inflation risks are spanned by PCs.16

15This rotation is normalized so that the parameters governing the Q distribution of yields—
(ρ0, ρP ,K

Q
0P ,K

Q
PP)—are fully determined by the parameter set (ΣPP , λ

Q, rQ∞) (see JSZ), where λQ

denotes the R-vector of ordered non-zero eigenvalues of KQ
PP and rQ∞ denotes the long-run mean

of rt under Q. As in JSZ, we can accommodate repeated and complex eigenvalues. As they show,
a minor modification allows us to consider zero eigenvalues in the canonical form. (λQ, rQ∞) are
rotation invariant (that is, independent of the choice of pricing factors) and, hence, are economically
interpretable parameters.

16A generic feature of all reduced-form MTSMs designed to price nominal Treasury bonds is
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We stress that whether or not a macro-DTSM embodies the spanning property
(5) is wholly independent of the issue of errors in measuring either bond yields or
macro factors. As typically parameterized in the literature, measurement errors
are independent of economic agents’ decision problems and, hence, of the economic
mechanisms that determine bond prices.

Interestingly, the framework of Kim and Wright (2005), the model cited by
Chairman Bernanke when discussing the impact of the macroeconomy on bond
market risk premiums, formally breaks the perfect spanning condition (5), but
without incorporating FP3. Kim and Wright assume that Mt is inflation, and they
arrive at their version of (11) by assuming that expected inflation is spanned by the
pricing factors in the bond market. They additionally assume that P follows an
autonomous Gaussian process under Q so their model and ours imply exactly the
same bond prices. However, the P-distribution of Zt implied by their assumptions
(adapted to our framework) is:[

Pt
Mt

]
=

[
KP

0P
γ0

]
+

[
KP
PP 0

γ′1PK
P
PP 0

] [
Pt−1

Mt−1

]
+
√

ΣZ

[
εPPt
ηt

]
, (12)

where ηt = (νt + γ′1P
√

ΣPPε
P
Pt). Thus, the Kim-Wright formulation leads to a

constrained special case of our model under which the history of Mt has no forecasting
power for future values of M or P, once one conditions on the history of P. As we
will see, the zero restrictions in (12) are strongly rejected in our data.

Left open by this discussion is the issue of whether our model is canonical in the
sense that all R-factor MTSMs with N−R unspanned macro risks are observationally
equivalent to a model in the class we specify here. We show in Appendix B the
conditions on the latent factor model to allow for unspanned risks. We then show in
Appendix C that every model with unspanned macro risk is observationally equivalent
to our MTSM with the state vector Z ′t = (P ′t,M ′

t), where Pt are the first R principal
components of yt.

17

that one cannot identify the market prices of the full complement of risks Zt from the bond-market
specific pricing kernel MX . This means, in particular, that the market prices of the total—spanned
plus unspanned—macro risks are not econometrically identified, because nominal bond prices are not
sensitive to the risk premiums that investors demand for bearing the unspanned macro risks. The
market prices of unspanned inflation risk are potentially identified from TIPS yields, as in D’Amico,
Kim, and Wei (2008) and Campbell, Sunderam, and Viceira (2013). However, the introduction of
TIPS raises new issues related to illiquidity and data availability, so we follow most of the extant
literature and focus on nominal bond yields alone.

17Appendix C also gives the explicit construction of (ρ0, ρP ,K
Q
0P ,K

Q
PP) from (ΣPP , λ

Q, rQ∞) for
our choice of P as a vector of yield PCs.
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4 The Likelihood Function

In constructing the likelihood function for our canonical MTSM we let yt denote
the J-dimensional vector of bond yields (J > N) to be used in assessing the fit of
an MTSM . We assume that Zt, including Pt, is measured without error and that
the remaining J −R PCs of the yields yt, PC

e′ ≡ (PC(R+ 1), . . . , PCJ), are priced
with i.i.d. N(0,Σe) errors.Sufficient conditions for any errors in measuring (pricing)
Pt to be inconsequential for our analysis are derived in JLS, and experience shows
that the observed low-order PCs comprising Pt are virtually identical to their filtered
counterparts in models that accommodate errors in all PCs. With this error structure,
the conditional density of (Zt, PC

e
t ) is:

f(Zt, PC
e
t |Zt−1; Θ) = f(PCe

t |Zt, Zt−1; Θ)× f(Zt|Zt−1; Θ)

= f(PCe
t |PCt;λQ, rQ∞, LZ , Le)× f(Zt|Zt−1;KP

Z , K
P
0 , LZ), (13)

where LZ and Le are the Cholesky factorizations of ΣZ and Σe, respectively.
A notable property of the log-likelihood function associated with (13) is the

complete separation of the parameters (KP
0Z , K

P
1Z) governing the conditional mean

of the risk factors from those governing risk-neutral pricing of the bond yields and
PCs. Absent further restrictions, the ML estimators of (KP

0Z , K
P
1Z) are recovered by

standard linear projection.
Even more striking is the implication of (13) that the least-squares estimators of

(KP
0Z , K

P
1Z) are invariant to the imposition of restrictions on the Q distribution of

(Zt, yt). In particular, consider the following two canonical MTSMs with identical
state vector Z ′t = (P ′t,M ′

t): model 1 has R < N pricing factors normalized to Pt, and
model 2 has N pricing factors normalized to Zt. Model 1 is precisely our MTSM .
In contrast, model 2 is equivalent to a MTSM in which the pricing factors are the
first N PCs of yields and the spanning condition (5) is enforced. In both of these
models the likelihood function factors as in (13) and, therefore, both models imply
identical ML estimates (KP

0Z , K
P
1Z) and, hence, identical optimal forecasts of Z.

Pursuing this comparison, the implausibly large Sharpe ratios that arise in models
of type 2 with relatively large N must arise from over-fitting the pricing distribution
of the risk factors, f(PCe

t |Zt, Zt−1). We avoid this over-fitting by adopting a more
parsimonious f(PCe

t |Zt, Zt−1) (shrinking N factors down to R).18 The pricing kernel

18Certainly other sets of constraints on an N -factor pricing model might avoid the over-specification
of f(PCe

t |Zt, Zt−1). However, care must be exercised in choosing these constraints so as to avoid
solving a problem with the Q distribution at the expense of contaminating the P distribution of Z.
The possibility of transferring mis-specification from the Q to the P distribution arises, for example,
when constraints are imposed on ΛP(Zt) to attenuate excessive Sharpe ratios (Duffee (2010)).
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underlying our MTSM has the appealing interpretation as the projection of agents’
kernel onto the factors Pt that, consistent with FP1, describe the cross section of
bond yields. Moreover, this parsimony is achieved with the likelihood function of our
canonical MTSM being fully unencumbered in fitting the conditional mean of Zt,
thereby offering maximal flexibility in matching FP2 and FP3.

5 Risk Premium Accounting

Our sample extends from January, 1985 through December, 2007. There is substantial
evidence that the Federal Reserve changed its policy rule during the early 1980’s,
following a significant policy experiment (Clarida, Gali, and Gertler (2000), Taylor
(1999), and Woodford (2003)). Our starting date is well after the implementation of
new operating procedures, and covers the Greenspan and early Bernanke regimes.
See Section 8 for a discussion of alternative sample periods. Consistent with the
literature, we tie the choice of the number of risk factors underlying bond prices
(R) to the cross-sectional factor structure of yields over the range of maturities we
examine. Over 99% of the variation in yields is explained by their first three PCs,
so we set R = 3 and, without loss of generality (see Section 3), normalize Pt to be
these three PCs. Mt includes the measures of output growth and expected inflation
(GRO, INF ) described in Section 2, so that N = 5. The time series (P ′t, GROt, INFt)
are displayed in Figure 2.19

With (R = 3, N = 5) our canonical model with unspanned macro risk has forty-
five parameters governing the P distribution of Z (those comprising KP

0 , KP
Z , and LZ).

There are four additional parameters governing the Q distribution of Z (rQ∞ and λQ).
Faced with such a large number of free parameters, we proceed with a systematic
model-selection search over admissible parameterizations of the market prices of P
risks. The scaled market prices of risk, Σ

1/2
PPΛP(Zt), depend on the fifteen parameters

of the matrix Λ1 ≡ KP
PZ − [KQ

PP 03×2] governing state-dependence, where KP
PZ is the

first three rows of KP
Z , and also on the three intercept terms Λ0 ≡ KP

0P −K
Q
0P . We

address two distinct aspects of model specification with our selection exercise.
First, we seek the best set of zero restrictions on these eighteen parameters govern-

ing risk premiums, trading off good fit against over-parameterization. Exploiting the
structure of our MTSM , we show in Appendix D that, to a first-order approximation,
the first row of Λ0 + Λ1Zt is the excess return on the yield portfolio whose value

19Letting `j,i denote the loading on PCj in the decomposition of yield i, the PCs have been

rescaled so that (1)
∑8

i=1 `1,i/8 = 1, (2) `2,10y − `2,6m = 1, and (3) `3,10y − 2`3,2y + `3,6m = 1. This
puts all the PCs on similar scales.
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Figure 2: Term Structure and Macro Variables This figure plots the time series
of (PC1, PC2, PC3) of U.S. Treasury-implied zero yields as well as macro variables
GRO and INF . The shaded areas mark NBER recessions. GRO is measured by the
three-month moving average of the Chicago Fed National Activity Index and INF is
measured as the expected rate of inflation over the coming year as computed from
surveys of professional forecasters by Blue Chip Financial Forecasts.

changes (locally) one-for-one with changes in PC1, but whose value is unresponsive
to changes in PC2 or PC3. Similar interpretations apply to the second and third
rows of Λ0 + Λ1Zt, for PC2 and PC3. By examining the behavior of the expected
excess returns on these PC-mimicking portfolios, xPCjt (j = 1, 2, 3), we gain a
new perspective on the nature of priced risks in Treasury markets. This economic
interpretation of the constraints on [Λ0 Λ1] is a benefit of our canonical form; no such
model-free interpretation is possible within a latent factor model.

Second, in applying these selection criteria, we are mindful of the near unit-root
behavior of yields under both P and Q. There is substantial evidence that bond
yields are nearly cointegrated (e.g., Giese (2008), Jardet, Monfort, and Pegoraro
(2011)). We also find that PC1, PC2, and INF exhibit behavior consistent with a
near cointegrating relationship, whereas PC3 and GRO appear stationary. While
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we do not believe that (PC1, PC2, INF ) literally embody unit-root components, it
may well be beneficial to enforce a high degree of persistence under P, since ML
estimators of drift parameters are known to be biased in small samples (Yamamoto
and Kumitomo (1984)). This bias tends to be proportionately larger the closer a
process is to a unit root process (Phillips and Yu (2005), Tang and Chen (2009)).

Moreover, when KP
Z is estimated from a V AR, its largest eigenvalue tends to be

sufficiently below unity to imply that expected future interest rates out ten years or
longer are virtually constant (see below). This is inconsistent with surveys on interest
rate forecasts (Kim and Orphanides (2005)),20 and leads to the attribution of too
much of the variation in forward rates to variation in risk premiums.

To address this persistence bias, we exploit two robust features of MTSMs: the
largest eigenvalue of KQ

PP tends to be close to unity, and the cross section of bond
yields precisely identifies the parameters of the Q distribution (in our case, rQ∞ and λQ).
Any zero restrictions on Λ1 called for by our model selection criteria effectively pull
KP
Z closer to KQ

PP , so the former may inherit more of the high degree of persistence
inherent in the latter matrix. In addition, we call upon our model selection criteria
to evaluate whether setting the largest eigenvalues of the feedback matrices KP

Z and
KQ
PP equal to each other improves the quality of our MTSM . Through both channels

we are effectively examining whether the high degree of precision with which the cross
section of yields pins down λQ is reliably informative about the degree of persistence
in the data-generating process for Zt. Again, this exploration is not possible absent
the structure of a MTSM .21

5.1 Selecting Among Models

Since there are eighteen free parameters governing risk premiums, there are 218

possible configurations of MTSMs with some of the risk-premium parameters set to
zero. We examine each of these models with and without the eigenvalue constraint
across KP

Z and KQ
PP , for a total of 219 specifications. Though 219 is large, the rapid

convergence to the global optimum of the likelihood function obtained using our
normalization scheme makes it feasible to undertake this search using formal model
selection criteria. For each of the 219 specifications examined, we compute full-
information ML estimates of the parameters and then evaluate the Akaike (1973)

20Similar considerations motivated Cochrane and Piazzesi (2008), among others, to enforce even
more persistent unit-root behavior under P in their models.

21Alternative approaches to addressing small-sample bias in the estimates of P distribution in
dynamic term structure models include the near-cointegration analysis of Jardet, Monfort, and
Pegoraro (2011) and the bootstrap methods used by Bauer, Rudebusch, and Wu (2011).
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(AIC), Hannan and Quinn (1979) (HQIC), and Schwarz (1978) Bayesian information
(SBIC) criteria.22 The criteria HQIC and SBIC are consistent (i.e., asymptotically
they select the correct configuration of zero restrictions on [Λ0 Λ1]), while the AIC
criterion may asymptotically over-fit (have too few zero restrictions) with positive
probability.23

The model selected by both the HQIC and SBIC criteria has twelve restrictions:
eleven zero restrictions on [Λ0 Λ1] and the eigenvalue constraint (see Appendix E for
further details). The AIC criterion calls for fewer zero restrictions. All three criteria
call for enforcing near-cointegration through the eigenvalue constraint. We proceed
to investigate the more parsimonious MTSM that enforces the eigenvalue and eleven
zero restrictions on the market prices of the risks ΛPt identified by the HQIC and
SBIC criteria. We denote this MTSM with unspanned macro risks by Mus.

5.2 Risk Premium Accounting: Model Comparison

Initially, we compare our preferred model Mus to three other models: the uncon-
strained canonical model (Mnosel

us ); the model Me
us obtained by imposing only the

eigenvalue constraint; and model M0
us which imposes the eleven zero restrictions on

risk premiums through [Λ0 Λ1], but not the eigenvalue constraint. ML estimates of
the parameters governing the Q distribution of Zt from model Mus are displayed in
the first column of Table 1.24 The estimates for the other three models are virtually
indistinguishable from these estimates, typically differing in the fourth decimal place.
This says that the parameters of the Q distribution are determined largely by the
cross-sectional restrictions on bond yields, and not by their time-series properties
under the P distribution. Models Me

us and Mus exploit this precision to restrict the
degree of persistence of Zt under P.

Thus, any differences in the model-implied risk premiums must be attributable to
differences in either the model-implied loadings of the yields onto the pricing factors
Pt in (9), or the the feedback matrices KP

Z (differences in the P distributions of Pt).
The loadings are fully determined by the Q parameters (rQ∞, λ

Q,ΣPP) (Appendix A).

22Bauer (2011) proposes a complementary approach to model selection based on the posterior odds
ratio from Bayesian analysis. Another potential approach to deal with over-parameterization is given
in Duffee (2010). He places restrictions on the maximal Sharpe ratio. However, in our formulations
with unspanned macro risks, the maximal Sharpe ratios are reasonable and such constraints would
be slack; further a spanning model would not allow unspanned macro risks.

23These properties apply both when the true process is stationary and when it contains unit roots,
as is discussed in Lutkepohl (2005), especially Propositions 4.2 and 8.1.

24Throughout our analysis asymptotic standard errors are computed by numerical approximation
to the Hessian and using the delta method.
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Param Mus Param Mnosel
us M0

us Me
us Mus

rQ∞ 0.0918 |λP1 | 0.9838 0.9939 0.9972 0.9971
(0.0058) (0.0096) (0.0089) (0.0005) (0.0005)

λQ1 0.9971 |λP2 | 0.9412 0.9541 0.9408 0.9539
(0.0005) (0.0221) (0.0112) (0.0222) (0.0111)

λQ2 0.9650 |λP3 | 0.9412 0.9541 0.9408 0.9539
(0.0026) (0.0221) (0.0112) (0.0222) (0.0111)

λQ3 0.8868 |λP4 | 0.9313 0.8867 0.9311 0.8819
(0.0122) (0.0333) (0.0452) (0.0333) (0.0513)

|λP5 | 0.7633 0.8606 0.7631 0.8625
(0.0433) (0.0267) (0.0432) (0.0349)

Table 1: ML estimates of the Q parameters for our preferred model with unspanned
macro risksMus: the long run mean of the short rate under Q, rQ∞, and the eigenvalues
of the feedback under Q, λQ, which control the Q-rates of mean reversion of the
factors. Also tabulated are the moduli of the eigenvalues of KP

Z for models Mnosel
us

(no model selection imposed), M0
us (only risk premium zero constraints), Me

us (only
eigenvalue constraint), and Mus (our preferred model), which determine the P-rate
of mean reversion. Asymptotic standard errors are given in parentheses.

We have just seen that the parameters (rQ∞, λ
Q) are nearly identical across models

and, as it turns out, so are the ML estimates of ΣPP . Consequently, the loadings
(Am, Bm) are also (essentially) indistinguishable across the four models examined.

In contrast, there are notable differences in the estimated feedback matrices KP
Z .

The eigenvalues of KP
Z (columns four through seven of Table 1),25 reveal that the

largest P-eigenvalue in the canonical model Mnosel
us is smaller than in the constrained

models. Its small value implies that expected future short-term rates beyond ten
years are (nearly) constant or, equivalently and counterfactually, that virtually all of
the variation in long-dated forward rates arises from variation in risk premiums.

Comparing across models also sheds light on the effects of our constraints on
the P-persistence of the risk factors. Enforcing the eleven zero restrictions in model
M0

us increases the largest eigenvalue of KP
Z from 0.984 to 0.994, and thus closes

most of the gap between models Mnosel
us and Mus. In model M0

us, Zt is sufficiently
persistent under P for long-dated forecasts of the short rate to display considerable

25The fact that there are pairs of equal moduli in all three models means that there are complex
roots in KP

Z . The complex parts were small in absolute value.
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P const PC1 PC2 PC3 GRO INF

PC1 0 −0.0896 −0.0510 0 0.1083 0.1729
(0.0157) (0.0122) (0.0313) (0.0326)

PC2 0 0 0 −0.1035 −0.1487 0.0486
(0.0330) (0.0307) (0.0123)

PC3 0 0 0 0 0 0

Table 2: ML estimates from our preferred model with unspanned macro risks, Mus

of the parameters Λ0 and Λ1 governing expected excess returns on the PC-mimicking
portfolios: xPC = Λ0 + Λ1Zt. Standard errors are given in parentheses. Zeros are
from our model selection.

time variation. A further increase in the largest eigenvalue of KP
Z comes from adding

the eigenvalue constraint in model Mus.
Estimates from model Mus of the parameters governing the expected excess

returns xPCjt (j = 1, 2, 3) are displayed in Table 2. The first and second rows of Λ1

have non-zero entries, while the last row is set to zero by our model selection criteria.
It follows that exposures to PC1 and PC2 risks are priced, but exposure to PC3 risk
is not priced, at the one month horizon and during our sample period. That both
level and slope risks are priced, instead of just level risk as presumed by Cochrane and
Piazzesi (2008), is one manifestation of the important influence of macro factors on
risk premiums.26 GRO and INF both have statistically significant effects on xPC1
and xPC2. xPC1 is also influenced by PC1 and PC2, while xPC2 also depends on
the curvature factor PC3.

The signs of the coefficients imply that shocks to GRO induce pro- (counter-)
cyclical movements in the risk premiums associated with exposures to PC1 (PC2).
These effects can be seen graphically in Figure 3 for models Mnosel

us and Mus, where
the shaded areas represent the NBER-designated recessions. Exposures to PC1
(PC2) lose money when rates fall (the curve flattens), which is when investors holding
long level (slope) positions make money. This explains the predominantly negative
(positive) expected excess returns on the annualized xPC1 (xPC2), and why it is
small (large) during the 1990 and 2001 recessions. There is broad agreement on the
fitted excess returns across models Mnosel

us and Mus.
The premium on PC2 risk achieves its lowest value, and concurrently the premium

on PC1 risk achieves its highest value, during 2004/05. Between June, 2004 and

26With a model fit to yields alone, Duffee (2010) also finds evidence for two priced risks.
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(b) Excess Return on Slope-Mimicking Portfolio

Figure 3: Expected excess returns on the level- and the slope-mimicking portfolios
implied by our preferred model with unspanned macro risks,Mus, and the counterpart
without model selection applied, Mnosel

us .
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KP
0 KP

Z

Z PC1 PC2 PC3 GRO INF

PC1 0.0002 0.9138 −0.0211 −0.0482 0.1083 0.1729
(0.0000) (0.0156) (0.0121) (0.0031) (0.0313) (0.0326)

PC2 −0.0004 −0.0188 0.9697 0.0426 −0.1487 0.0486
(0.0001) (0.0012) (0.0017) (0.0327) (0.0307) (0.0123)

PC3 0.0007 0.0155 0.0010 0.8757 0 0
(0.0001) (0.0016) (0.0023) (0.0117)

GRO 0.0009 −0.0157 0.0191 −0.1035 0.8889 0.0233
(0.0006) (0.0144) (0.0109) (0.0381) (0.0262) (0.0322)

INF 0.0003 −0.0002 0.0090 −0.0395 0.0347 0.9966
(0.0002) (0.0086) (0.0056) (0.0223) (0.0161) (0.0194)

Table 3: Maximum Likelihood Estimates of KP
0 and KP

Z for our preferred model with
unspanned macro risks (Mus): E

P
t [Zt+1] = KP

0 +KP
ZZt. Standard errors are reported

in parentheses.

June, 2006 the Federal Reserve increased its target Federal Funds rate by 4% (from
1.25% to 5.25%). Yields on ten-year Treasuries actually fell during this time, leading
to a pronounced flattening of the yield curve, what Chairman Greenspan referred to
as a conundrum. We revisit these patterns subsequently.

ML estimates of KP
0 and KP

Z governing the P-drift of Zt are displayed in Table 3
for model Mus.

27 The non-zero coefficients on (GROt−1, INFt−1) in the rows for
(PC1, PC2) are all statistically different from zero at conventional significance levels,
confirming that macro information is incrementally useful for forecasting future bond
yields after conditioning on {PC1, PC2, PC3}. Additionally, the coefficients on the
own lags of GRO and INF are large and significantly different from zero, as expected
given the high degree of persistence in these series.

For comparison, we also estimate a model Mspan that enforces spanning of the
forecasts of output growth and expected inflation by the yield PCs. Recall this
is the nested special case with the last two columns of KP

Z set to zero, as in (12).

27The zeros in row PC3 follow from the zero constraints on Λ1. A zero in Λ1 means that the
associated factor has the same effect on the P-forecasts as Q-forecasts (i.e., KQ

PP,ij = KP
PP,ij). Since,

by construction, the macro factors do not incrementally affect the Q-expectations of the PCs, it
follows that Mt has no effect on the P-forecasts of PC3.
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Similar models with macro spanning, based on the analyses of Bernanke, Reinhart,
and Sack (2004) and Kim and Wright (2005), are referenced by Chairman Bernanke
in discussions of the impact of the macro economy on bond risk premiums. For our
choices of macro factors (GRO, INF ), the χ2 statistic for testing the null hypothesis
that the last two columns of KP

Z are zero is 1,189 (the 5% cutoff is 18.31). As we
next show, the misspecified model Mspan implies very different term premiums than
model Mus with unspanned macro risks.

6 Forward Term Premiums

Excess holding period returns on portfolios of individual bonds reflect the risk
premiums for every segment of the yield curve up to the maturity of the underlying
bond. A different perspective on market risk premiums comes from inspection of the
forward term premiums, the differences between forward rates for a q-period loan to be
initiated in p periods and the expected yield on a q-period bond purchased p periods
from now. Within affine MTSMs, both forward rates and expected future q-year rates
(and thus their difference) are affine functions of the state Zt: FTP

p,q
t = fp,q0 +fp,qZ ·Zt.

To illustrate the differences between the risk premiums implied by MTSMs with
and without macro spanning, we display in Figure 1 three different variants of the
“in-two-for-one” forward term premium FTP 2,1. One is the fitted premium from our
selected model Mus with unspanned macro risks. The projection of this premium
onto Pt is displayed as PMus. By construction, the Mus premium depends on the
entire set of risk factors Zt, and any differences betweenMus and PMus arise entirely
from the effect of the unspanned components of Mt on FTP 2,1

t . The Mus premium
shows pronounced counter-cyclical swings about a gently downward-drifting level.
The differences between the Mus and PMus premiums induced by unspanned macro
risks are largest during the late 1980’s and the conundrum period, as well as at most
peaks and troughs of FTP 2,1. These peak/trough differences are a consequence in
large part of the dependence of the Mus premium on GRO.

Equally striking from Figure 1 are the very different patterns in the fitted FTP 2,1

from model Mus and the premium from model Mspan that constrains Et−1[Mt] to be
spanned by Pt−1 (as in (12)). Both PMus andMspan are graphs of premiums that are
spanned by Pt. However, they will coincide only when the macro-spanning constraint
imposed in model Mspan is consistent with the data-generating process for Zt. In
fact, the cyclical turning points of the premiums from models Mus and Mspan are
far from synchronized, Mspan drifts much lower during the late 1990’s, and it stays
(relatively) high after the burst of the dotcom bubble when Mus was declining along
with the Federal Reserve’s target federal funds rate. Clearly the macro-spanning
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Figure 4: Standardized “in-9-for-1” forward premium from our preferred model with
unspanned macro risk, Mus, plotted against standardized GRO. The shaded band
around FTP 9,1 is the 95% confidence band. FTP 9,1 is defined as the difference
between the expectation for nine years in the future of the one-year yield and the
forward rate that one could lock in today for a one-year loan commencing in nine
years. GRO is the Chicago Fed National Activity Index.

constraint distorts the fitted risk premiums in economically significant ways.
Turning to longer-dated forward term premiums, the standardized “in-nine-for-

one” premium FTP 9,1 is displayed in Figure 4, along with a standardized version of
GRO. The band about the fitted FTP 9,1 is the 95% confidence band based on the
precision of the ML estimates of f 9,1

Z . Importantly, with conditioning on both the
macro factors and the shape of the yield curve, the implied FTP 9,1 does not follow
an unambiguously counter-cyclical pattern. FTP 9,1 is high during the recession of
the early 1990’s. However, during 1993 through 2000, there are subperiods when
GRO and FTP 9,1 track each other quite closely.

The sources of this pro-cyclicality are revealed by the estimated coefficients fp,1Z

that link the FTP s to Zt (Table 4). The negative weights on GRO and INF induce
counter-cyclical movements in FTP s.28 However, all three PCs have statistically

28Complementary evidence that real economic activity affects expected excess returns on short-
dated federal funds futures positions is presented in Piazzesi and Swanson (2008).
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const PC1 PC2 PC3 GRO INF
2-for-1 −0.0153 1.1522 0.2227 0.9066 −0.5950 −1.5141

(0.0108) (0.1987) (0.1841) (0.3768) (0.2786) (0.4280)

5-for-1 −0.0103 0.9090 0.4179 0.4262 0.2430 −0.8301
(0.0137) (0.1166) (0.1238) (0.2641) (0.1737) (0.3989)

9-for-1 −0.0023 0.7392 0.5341 0.6875 0.0828 −0.7623
(0.0151) (0.0813) (0.0983) (0.1600) (0.1046) (0.2994)

Table 4: Coefficients fp,10 and fp,1Z determining the mapping between the forward term
premiums FTP p,1

t and the state Zt in our preferred model with unspanned macro
risks,Mus: FTP

p,1
t = fp,10 + fp,1Z ·Zt. FTP p,1 is defined as the difference between the

expectation for p years in the future of the one-year yield and the forward rate that
one could lock in today for a one-year loan commencing in p years.

significant, positive effects on FTP 9,1. PC1 in particular followed a pro-cyclical path
during the 1990’s (Figure 2), and the FTP s reflect a blending of the influences of the
priced level and slope risks. Evidently, there were important economic forces driving
term premiums that were orthogonal to output growth and inflation.

We turn next to a more in-depth exploration of the contributions of unspanned
macro risks to variation in risk premiums.

7 Spanned and Unspanned Macro Risks

An intriguing aspect of our empirical findings is the horizon-dependence of the impact
of macro risk factors on risk premiums in the Treasury market. Figure 3 shows
distinct cyclical patterns for level and slope risk premiums. Additionally, the loadings
in Table 4 imply that the effect of GRO on the FTP p,1 decline markedly, while those
for INF remain large and of the same sign, as the contract horizon p increases. To
what extent are the cyclical risk profiles of Treasury bonds determined by shocks to
unspanned versus spanned macroeconomic factors?

Analogous to the loadings on GRO in Table 4 we find that a positive innovation
to GRO tends to lower FTP 1,1, while (as the table shows) being largely neutral
for FTP 9,1, thus inducing a steepening of the forward premium curve (increase in
SLF 9

1 ≡ FTP 9,1 − FTP 1,1). The impulse responses (IRs) of SLF 9
1 to innovations in

spanned (SGRO) and unspanned (OGRO) output growth are displayed in Figure 5a
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Figure 5: The left panel plots the impulse responses of the slope of the forward
premium curve, SLF 9

1 = FTP 9,1 − FTP 1,1, to shocks to either (SGRO,OGRO)
from our preferred model with unspanned macro risksMus. The right panel compares
the responses of SLF 9

1 to innovations in total GRO across our preferred model
with unspanned macro risks, Mus, and the nested model that enforces spanning of
expectations of the macro variables by the yield PCs (Mspan). SGRO, spanned
growth, is the projection of GRO onto the PCs; OGRO is the component of GRO
orthogonal to the PCs. FTP p,1 is defined as the difference between the expectation
for p years in the future of the one-year yield and the forward rate that one could
lock in today for a one-year loan commencing in p years.

for model Mus.
29 A shock to OGRO induces an immediate, large steepening of the

forward premium curve, and its effect then dissipates rapidly over the following year.
This dominant role for OGRO emerges even though SGRO is ordered first in the
underlying V AR. The macro-spanning restriction rules out any effect of OGRO on
SLF 9

1 .
Moreover, macro-spanning restrictions severely distort the responses of SLF 9

1

to shocks to total output growth GRO. The response of SLF 9
1 to a GRO shock

in model Mus (Figure 5b) looks nearly identical to its response to OGRO in the
adjacent figure, a manifestation of the large unspanned component of GRO. On the
other hand, under macro spanning in modelMspan, the response of SLF 9

1 to a growth
shock is (virtually) zero at all horizons. Evidently, shutting down the feedback from
GRO to future Z drives out the economically important effects of growth on the

29These IRs are computed from the (ordered) V AR of (SGRO,SINF,OGRO,OINF, SLF 9
1 )

implied by model Mus, where SGRO is the model-implied projection of GROt onto the PCs Pt

and OGROt is the residual from this projection.
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Figure 6: Each panel plots the impulse responses of FTP s to shocks to spanned and
unspanned inflation, (SINF,OINF ) implied by our preferred model with unspanned
macro risks, Mus. SINF is the projection of INF onto the PCs; OINF is the
component of INF orthogonal to the PCs. FTP p,1 is defined as the difference
between the expectation for p years in the future of the one-year yield and the forward
rate that one could lock in today for a one-year loan commencing in p years.

slope of the forward premium curve.
In comparison to GRO, survey expectations of inflation are largely spanned by

Pt (85% of its variation) and INF shows higher persistence. The latter property of
INF gives it a level-like effect in that innovations in INF (roughly uniformly) affect
the entire maturity spectrum of yields. While the former property might lead one to
presume that shocks to unspanned inflation (OINF ) have inconsequential effects on
risk premiums, this is not the case. These properties of inflation risk can be seen from
the IRs of FTP p,1

t , p = 2, 9, to shocks to OINF and SINF displayed in Figure 6.
The effects of OINF persist for several years, owing to the near cointegration of
INF with the priced risk factors (PC1, PC2).

There is also near symmetry in the effects of (SINF,OINF ) on forward term
premiums. Initially, unspanned inflation shocks lead to lower FTP s, but the effects
turn positive within a year. Innovations in SINF , in contrast, have large positive
impact effects on FTP s that dissipate slowly over a couple of years. The dominant
effect on FTP 9,1 at long horizons comes from unspanned inflation risk.

Returning to the period of the conundrum during 2004/05, notice from Figure 4
that this was a period when GRO was increasing and long-dated forward term
premiums were falling. In speaking about the conundrum, Chairman Bernanke
asserted that “a substantial portion of the decline in distant-horizon forward rates
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of recent quarters can be attributed to a drop in term premiums. ... the decline in
the premium since June 2004 appears to have been associated mainly with a drop
in the compensation for bearing real interest rate risk.”30 According to our model,
the forward term premium FTP 9,1 indeed declined by 112 basis points between June
2004 and June 2005,31 but by June 2006 had retracted to almost exactly its June
2004 level.

As to whether these patterns reflect changing premiums on real interest rate risk,
of the initial decline, about 30 basis points can be attributed to orthogonal inflation,
almost none to orthogonal growth, with the remainder accounted for by factors
spanned by yields. Complementary to this, we find that the expected excess return
on a bond portfolio mimicking the negative of spanned inflation—an indicator of
the compensation required by investors facing spanned inflation risk—fell by roughly
60 basis points between June 2004 and June 2005. Both findings are indicative of
a potentially more significant role played by inflation risks during the conundrum
period than suggested by Chairman Bernanke.

Symmetric to this discussion is the interesting question of how changes in term
premiums affect real economic activity. Bernanke, in his 2006 speech, argues that a
higher term premium will depress the portion of spending that depends on long-term
interest rates and thereby will have a dampening economic impact. In linearized New
Keynesian models in which output is determined by a forward-looking IS equation
(such as the model of Bekaert, Cho, and Moreno (2010)), current output depends
only on the expectation of future short rates, leaving no role for a term premium
effect. Time-varying term premiums do arise in models that are linearized at least to
the third order (e.g., Ravenna and Seppala (2008)). We examine the response of real
economic activity and inflation expectations to innovations in FTP p,1 (p = 2, 9) in
the context of model Mus.

32

Initially, a one standard deviation increase in FTP 2,1 has a small negative impact
on OGRO over a period of about eighteen months, and has virtually no effect on
SGRO (Figure 7a). Shocks to the long-term premium FTP 9,1 induce a short-lived
positive effect on unspanned GRO (Figure 7b). Again the premium shock has no
effect on SGRO.33 These responses present a more differentiated perspective on the

30See his speech before the Economic Club of New York on March 20, 2006 titled “Reflections on
the Yield Curve and Monetary Policy.”

31And by an even larger 175 basis points between July 2003 and June 2005.
32The ordering of the model-implied V AR is (FTP p,1, SGRO,SINF,OGRO,OINF ).
33 The absence of effects on SGRO is consistent with the results in Ang, Piazzesi, and Wei (2006)

that term premiums are insignificant in predicting future GDP growth within an MTSM that
enforces spanning of GDP growth by bond yields. What their model does not accommodate is our
finding that term premium shocks do affect growth through their effects on unspanned real activity.
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Figure 7: Each panel plots the impulse responses of spanned and unspanned growth,
(SGRO,OGRO) to shocks in FTP s implied by our preferred model with unspanned
macro risks, Mus. SGRO is the projection of GRO onto the PCs; OGRO is the
component of GRO orthogonal to the PCs. FTP p,1 is defined as the difference
between the expectation for p years in the future of the one-year yield and the forward
rate that one could lock in today for a one-year loan commencing in p years.

economic linkages set forth by Chairman Bernanke. A negative impact on economic
activity arises from short- to medium-term risk premiums, not long-dated premiums.
Moreover, the effects are virtually entirely through unspanned real economic activity,
a component of growth that is absent from the models he cites in his analysis.

8 Extended Sample Analysis

In estimating our macro term structure models, we face a tradeoff between the
potential small-sample bias arising from our selected sample period and biases that
would arise from non-stationarity owing to structural breaks in a longer sample. The
existing literature is divided on how this tradeoff is best resolved.34 Based on the
existing research, we argue in Section 5 that our sample period (1985–2007) is the
longest recent sample that can reasonably be classified as a single regime (free from
structural breaks). Small-sample concerns are mitigated somewhat by sampling at a

34Ang and Piazzesi (2003) and Ang, Dong, and Piazzesi (2007) use relatively long, post-war
samples starting in the early 1950’s. Rudebusch and Wu (2008) start their sample in 1970 under the
caveat of structural stability concerns. Smith and Taylor (2009) cite evidence of a structural break
in the early 1980’s and consequently proceed with a split-sample analysis around that break point.
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monthly frequency, and by exploiting information about persistence from the pricing
distribution. Though we document an economically important link between yields
and unspanned macro risks, such links may well be different in different time periods.
Indeed, it is our prior that unspanned macro risks are qualitatively important across
policy regimes, but likely in quantitatively different ways.

8.1 Regime-Switching Model

To explore this conjecture jointly with our assumption that the post-1985 period
is adequately treated as a single regime, we estimate a regime-switching version
of our model, adapting the methodology of Dai, Singleton, and Yang (2007). Our
extended sample starts in November 1971 (the earliest date with consistent availability
of 10-year yield data, as discussed, for example, in Gurkanyak, Sack, and Wright
(2007)) and December 2007. We use the same cross section of yields, and the same
macroeconomic growth indicator (the Chicago Fed National Activity Index) as before,
but we can no longer use Blue Chip inflation forecasts, as these are not available prior
to the early 1980’s. Instead, we define INF as the 12-month moving average of core
CPI inflation, a measure that is highly correlated (> 90%) with Blue Chip inflation
forecasts over the period for which both inflation measures are available. We allow for
two regimes with time homogeneous transition matrices πP and πQ. All parameters
except λQ are permitted to depend on the current regime (the maximally flexible
regime-switching specification under which bond prices remain exponential-affine).
We do not otherwise constrain parameters or perform a model-selection procedure as
we did in Section 5.

Figure 8 shows that the maximum-likelihood-based regime classification35 is
indicative of a structural break in our data occurring in the mid-1980’s, broadly
consistent with the consensus in the literature. To a first approximation, the sample
is divided into an early (pre-1985) and late (post-1985) regime. In particular, with
the exception of the first year and three isolated months, the sample period we use
in our main analysis is contained within a single regime. Conversely, the pre-1985
period is predominantly classified as a different regime. This finding supports our
claim that the 1985–2007 period is adequately treated as a single regime, while this
would not be the case for a longer sample.

The two regimes differ in economically meaningful ways, and consistent with the
findings in previous research. In regime 2 (the “late” regime), the long-term mean
of the short rate under the risk neutral measure is lower, the system of yields and

35As is standard, we classify an observation as belonging to the regime with the highest ex post
(smoothed) probability.
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Figure 8: The figure shows the regime classification from a two-regime model with
unspanned macro risks. The red hatched area represents the first regime, while
shaded ares indicate NBER recession periods.

macro variables is more persistent and has lower conditional volatility (reflecting
the “Great Moderation” analyzed by Stock and Watson (2002)), and the regime is
more stable. While GRO affects level and slope risk premiums comparably across
regimes, not surprisingly given the high inflation in the first regime, INF has a much
larger effect on level risk in regime 1 than regime 2 (for exact parameter estimates,
see Appendix F). These differentiated results would be obscured if we estimated a
single-regime model over the longer sample period.

8.2 Out-of-Sample Analysis

Also of interest are the properties of our model’s implied risk premiums during the
post-2007 crisis period. Up to this point we have excluded this period out of concerns
not only about another structure break, but also about the ability of a Gaussian term
structure model to adequately capture yield dynamics near the zero lower bound.
With this cautionary observation in mind, we briefly examine the out-of-sample
differences between our preferred model with unspanned macro variables, Mus, and
the alternative model with spanned macro factors, Mspan. For this purpose we
compute fitted risk premiums (based on model estimates for the 1985–2007 sample)

29



starting from the end of our estimation sample and continuing through July 2012.
Figure 9 plots the in-two-for-one forward term premiums implied by models Mus

and Mspan. As we discussed in Section 6, these forward term premiums bear limited
resemblance in sample. Out of sample, the differences are even more pronounced,
particularly in the 2008–2010 period. The term premium implied by model Mus

initially increases sharply in 2008 with a rapidly deteriorating economic outlook. It
rebounds later that year, and declines by a similar magnitude in late 2010/early
2011. The declines roughly coincide with the Federal Reserve’s first two quantitative
easing programs (QE1 and QE2), a stated objective of which was to lower forward
term premiums. The movements in the Mspan-implied forward term premium are
much more subdued, and harder to reconcile with economic events. For instance, the
forward term premium increases around QE1.

9 Elaborations and Extensions

Our framework can be applied in any Gaussian pricing setting in which security
prices or yields are affine functions of a set of pricing factors Pt and risk premiums
depend on a richer set of state variables that have predictive power for Pt under the
physical measure P. Accordingly, it is well suited to addressing a variety of economic
questions about risk premiums in bond and currency markets, as well as in equity
markets when the latter pricing problems map into an affine pricing model (e.g.,
Bansal, Kiku, and Yaron (2012b)). Though neither the state variables nor the pricing
factors exhibit time-varying volatility in the settings examined in this paper, our basic
framework and its computational advantages are likely to extend to affine models
with time-varying volatility. Incorporating time-varying volatility would allow for the
possibility of volatility factors that are unspanned by bond prices or macro variables,
thereby generalizing Collin-Dufresne and Goldstein (2002). As in our setting, such
unspanned volatility factors may also drive expected returns (as in Joslin (2013b)).
Exploration of this extension is deferred to future research.

A distinct, though complementary, question is: what are the structural economic
underpinnings of the substantial effects of unspanned macro variables on risk premiums
that we documented in our empirical analysis? At this juncture we comment briefly
on the insights that our reduced-form model has revealed about the nature of risk
premiums in the U.S. Treasury market, again leaving the task of developing a
structural model with these features to future research.

Many of the extant structural models of term premiums in bond markets rule
out by construction any link between unspanned macro risks and term premiums.
This is trivially the case in the model of Bekaert, Cho, and Moreno (2010), because
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Figure 9: Out-of-sample forward term premiums FTP 2,1 for our preferred model
with unspanned macro risks (Mus), and the nested model that enforces spanning of
expectations of the macro variables by the yield PCs (Mspan).

they assume constant risk premiums. Gallmeyer, Hollifield, Palomino, and Zin (2007)
add preferences with habit shocks (as in Abel (1990)) to a policy rule to obtain a
setting with time-varying risk premiums. However, their models also imply that real
economic activity (in their case consumption growth) and inflation are fully spanned
by the current yield curve. Indeed, all of the equilibrium models of bond yields that
fall within the family of affine pricing models that we are aware of implicitly impose
macro-spanning conditions (see Le and Singleton (2013)).

We can imagine how unspanned macro risks could arise through additional
constraints on agents’ preferences, policy rules, and exogenous sources of uncertainty.
For instance, in a model with preferences of the habit type, if the short rate is affine
in growth and one component of growth has the same mean reversion as the habit
variable (for example, as growth decreases, risk aversion increases according to such
a rule), then there may be unspanned growth risk. Within an affine pricing setting,
such unspanned growth could be allowed to impact policy rules and the inflation
process. Yet whether this avenue for accommodating unspanned risks is fruitful is
ultimately a quantitative question that warrants further exploration. A primary
take-away from our findings is that this, or some other complementary, economic
mechanism seems needed to rationalize our core empirical findings.
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Our findings also speak to the policy conclusions drawn from structural models.
A standard framework for policy analysis within a structural term structure model
is the New Keynesian model, as in Clarida, Gali, and Gertler (1999). For example,
Gallmeyer, Hollifield, and Zin (2005) and Gallmeyer et al. (2007) examine affine term
structure models that embed Taylor- or McCallum-style monetary policy rules and
(implicitly) enforce spanning of all macro variables by bond yields. Our results suggest
that a monetary authority may affect the output gap and inflation through channels
that leave bond yields unaffected, by having a simultaneous effect on expectations
about the future short rates and risk premiums.

10 Conclusion

This paper has explored the effects of unspanned macro risks on risk premiums in
bond markets. We find that shocks to unspanned real economic activity and inflation
have large effects on term premiums in U.S. Treasury markets and, symmetrically,
shocks to forward term premiums have substantial effects on real economic activity
primarily through their effects on unspanned real output growth. Moreover, we
document an important role for unspanned inflation risks in shaping term premiums,
despite the fact that a large portion of the variation in inflation is spanned by bonds.

In order to assess the role of unspanned macro risks, we develop a canonical
arbitrage-free, Gaussian MTSM in which the state vector includes macroeconomic
variables that are not perfectly spanned by contemporaneous bond yields, and in
which these macro variables can have significant predictive content for excess returns
on bonds over and above the information in bond yields. We show that this canonical
representation of the model lends itself to easy interpretation and attains the global
maximum of the likelihood function essentially instantaneously.

Properties of the fitted historical distributions of bonds and pricing factors in our
MTSM are very different than what is implied by both a factor-V AR model or an
unconstrained version of our canonical model. Owing to the constraints suggested
by our model selection criteria, the persistence properties of bond yields, and hence
the relative importance of expected future spot rates versus forward term premiums,
are very different in our preferred model than in its unconstrained counterpart. This
suggests that, when estimating MTSMs, one should undertake similar model-selection
exercises to systematically reduce the dimension of the parameter space, as this might
similarly mitigate small-sample bias problems.

Our findings raise several intriguing questions for future research. Unspanned
macro risks, particularly real economic risks, had large effects on forward term
premiums over short- to intermediate-term horizons. What were the economic sources
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of these unspanned risks? On the other hand, we find that a substantial portion of
the variation in long-dated forward term premiums is attributable to economic factors
that are orthogonal to both spanned and unspanned output and inflation. It was
evidently these orthogonal risks that largely explained the decline in term premiums
during the period of the conundrum. What is the nature of these macro risks that
are so important in Treasury markets and yet are orthogonal to output growth and
inflation? Since the onset of the financial crisis, there has been considerable discussion
about the roles of global imbalances and disruptions in the financial intermediation
sectors. Our modeling framework provides a means of systematically examining these
possibilities within arbitrage-free dynamic term structure models.
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Appendices

A Bond Pricing in GDTMs

The price of an m-month zero-coupon bond is given by

Dt,m = EQ
t [e−

∑m−1
i=0 rt+i ] = eAm+Bm·Pt , (14)

where (Am,Bm) solve the first-order difference equations

Am+1 −Am =
(
KQ

0

)′ Bm +
1

2
B′mΣPPBm − ρ0 (15)

Bm+1 − Bm =
(
KQ

1

)′ Bm − ρ1 (16)

subject to the initial conditions A0 = 0,B0 = 0. See, for example, Dai and Singleton
(2003). The loadings for the corresponding bond yield are Am = −Am/m and
Bm = −Bm/m.

B Conditions for Unspanned Risks

In this appendix, we derive the nominal pricing kernel (equivalently, risk neutral
distribution of the N risk factors Zt) in order to have a model with unspanned macro
risks. We begin with the general specification the nominal pricing kernel in (1) with
short rate given in (3) and dynamics of the state Zt variable given by (2). Macro
variables are added to the system through:

Mt = γ0Z + γ1Z · Zt. (17)

Notice that this specification is the most general affine Gaussian model. In particular,
it subsumes the case where some elements of Zt are themselves macro variables by
assuming that rows of γ1Z are standard basis vectors (with corresponding entries in
γ0Z set to zero.

From the pricing kernel, we derive the risk-neutral distribution of Zt through

dQ
dP

∣∣∣
t

= e−
∑t

s=1[ 12Λ′Z,sΛZ,s−Λ′Z,sη
P
s].

Our assumption is that the market prices of risk are affine so that, following the
notation of Section 5, we have

ΛZ,t = Σ
−1/2
ZZ (Λ0 + Λ1Zt)
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and the risk-neutral distribution is given by

Zt = KQ
0Z +KQ

1ZZt−1 +
√

ΣZη
P
t η

P
t ∼ N(0, I). (18)

Here (KQ
0Z , K

Q
1Z) are given through the market prices of risk:

KQ
0Z = KP

0Z − Λ0 (19)

KQ
1Z = KP

1Z − Λ1 (20)

Following Joslin (2013a), we see that the macro risks are unspanned macro risks
if there are (N −R) vectors {v1, v2, . . . , vN−R} so that for each i:

1. vi · ρ1Z = 0.

2. v′iK
Q
1Z is a multiple of KQ

1Z (i.e., vi is a left eigenvector of KQ
1Z .)

3. γ1 · vi 6= 0

The first condition ensures that the factor vi · Zt does not effect the short rate while
the second condition ensures that vi · Zt does not effect risk-neutral expectations of
the short rate (for any horizon). The final condition ensures that the factor vi · Zt
has an effect on the macro variables. We can relax this condition so that if vi ·Zt = 0
there can be a factor which is not identified by the joint cross section of bond prices
and Mt.

Notice that the conditions above are all specified directly in term of the risk-neutral
parameters. Alternatively, one could use (19) and (20) to express the conditions for
unspanned macro risk in terms of the market prices of risk and P-parameters.

C A Canonical Model with Unspanned Macro Risks

In this section we prove that our form of MTSM with unspanned macro risk is
canonical in the following sense. Consider the family of MTSM driven by with
nominal pricing kernel given in (1), with short rate given in (3), with dynamics of
the state Zt variable given by (2), and with macro variables given in (17). For Zt
of dimension N and Mt of dimension R, we denote UMAR

0 (N) to be the family this
family when the macro risks are unspanned. To prove that our family is canonical,
we show that every such MTSM is observationally equivalent (given data on the
macro variables and the cross section of all yields) to exactly one model with the
specification given in Section 3.
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To prove the existence of such a representation, we begin with a generic model
with a latent Zt driving yields and macro factors and apply the affine rotations as in
Dai and Singleton (2000). Taking the loadings from (9) we may write[

Pt
Mt

]
=

[
WA
γ0

]
+

[
WB
γ1

]
Zt, (21)

where W are the weights in the principles components and (A,B) are the stacked
loadings for the corresponding maturities. The matrix [WB, γ1] is invertible by
the spanning assumptions in the previous section. Thus after we apply the affine
transformation of (21) to our parameters, we obtain a model with (Pt,Mt) as the
state variable. The spanning assumptions in the previous section show that Pt is
Q-Markov and that the short rate must depend only on Pt (and not Mt). The
results of Joslin, Singleton, and Zhu (2011) then allow us to uniquely parameterize
the Q-distribution of Pt through (ΣPP , λ

Q, rQ∞). The Q-distribution of Mt is not
identified in our specification without further data. In the presence of securities
with payoffs directly tied to Mt, the risk-neutral dynamics could be fully specified
(equivalently, the entire pricing kernel rather than just the projection onto bond could
be identified.)

D Returns on Generalized Mimicking Portfolios

Consider a collection of N yields, {yn1
t , . . . , y

nN
t }, and a given linear combination

yat =
∑N

i=1 aiy
ni
t of these yields (yat could be a principal component, or the projection

of a macro variable onto the yields). Our first goal is to find weights {wi}Ni=1 such that
value Pw

t =
∑N

i=1wiP
ni
t of a portfolio of zero coupon bonds locally tracks changes in

yat ; that is,

dPw
t

dyat
=

N∑
i=1

dPw
t

dyni
t

dyni
t

dyat
= 1 (22)

Since, by definition, P ni
t = exp(−niyni

t ), we have dP ni
t /dy

ni
t = −niP ni

t . Therefore,
(22) can be rewritten as

−
N∑
i=1

winiP
ni
t

1

ai
= 1

which will hold for weights

wi = − ai
NniP

ni
t
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Next, consider the one-period excess return on portfolio Pw
t :∑

iwi(P
ni−1
t+1 − ertP

ni
t )

|
∑

iwiP
ni
t |

=
−
∑

i ai/ni(P
ni−1
t+1 /P ni

t − ert)
|
∑

i ai/ni|
.

This is a weighted average of the returns on the individual zero coupon bonds. Now,
it follows from Le, Singleton, and Dai (2010) that P ni

t = exp(−Ani
− Bni

Pt), and
further that

EP[P ni−1
t+1 /P ni

t ] = exp{Bni−1[(KQ
0 −KP

0 ) + (KQ
P −K

P
P)Zt] + rt}.

Therefore, to a first-order approximation, the expected excess return on portfolio Pw
t

is given by ∑
i ai/niBni−1[(KP

0 −K
Q
0 ) + (KP

P −K
Q
P )Zt]

|
∑

i ai/ni|
.

Since we rotate our model such that the first R elements of Zt correspond to the first
R principal components of yields, and since by definition,

PCjt =
N∑
i=1

`jiy
ni
t =

N∑
i=1

`ji (Ani
/ni +Bni

/niPt)

it follows that
∑

i `
j
iBni

/ni is the selection vector for the jth element, j ∈ {1, . . . , R}.
Thus, under the further approximation that Bni−1 ≈ Bni

, the expected excess return
on the portfolio mimicking PCj, xPCj, is given by the jth row of

(KP
0 −K

Q
0 ) + (KP

P −K
Q
P )Zt

scaled by |
∑

i `
j
i/ni|. While an approximation for the one-period expected excess

return in discrete time, this relationship is exact for the instantaneous expected excess
return in the continuous-time limit.

E Details on Model Selection

As discussed in Section 5.1, we select among a total of 219 model specifications
distinguished by different sets of restrictions on the market price of risk parameters,
and the maximum eigenvalue of KP

Z . In estimating the baseline (unrestricted) version
of our model, we reduce the computational burden by taking advantage of the
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likelihood function factorization (13). Given (rQ∞, λ
Q, LZ), the remaining parameter

estimates can be computed in closed form as the solution to a standard OLS problem.
Thus, we only need to optimize numerically over (rQ∞, λ

Q, LZ).
Estimators for the restricted versions of our models can be computed almost

equally efficiently. First, given (rQ∞, λ
Q, LZ), the zero restrictions on market price of

risk parameters can be expressed as linear restrictions on (KP
0 , K

P
Z). In the likelihood

factorization (13), the first term is unaffected by these restrictions. Maximizing the
second term with respect to (KP

0 , K
P
Z) amounts to estimating a restricted Seemingly

Unrelated Regression problem, which has a known closed-form solution. Therefore,
the computational complexity of the overall maximization problem is unchanged.
Similarly, the eigenvalue constraint on KP

Z can also be expressed as a linear restriction
given λQ: The restriction can be written as det(KP

Z−λQmaxI) = 0⇒ (KP
Z−λQmaxI)b = 0

for some vector b. Hence, this amounts to additional linear restrictions on KP
Z , given

b. However, the parameters in vector b must now be included in the set of parameters
over which we optimize numerically. This makes the optimization problem somewhat
more complex, although in practice we find convergence is still rapid.

The outcome of our model selection procedure can be summarized graphically as
a “likelihood frontier,” as in Figure 10.

F Parameter Estimates for Regime-Switching Model
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Figure 10: Each of the 219 model specifications we consider corresponds to a point
on the graph. The likelihood frontiers “Without EV” and “With EV” trace out the
models with the highest likelihood for a given number of restrictions, without and
with the maximum eigenvalue constraint on KP

Z imposed, respectively. The straight
lines are “indifference curves” for each of the three information criteria. The tangency
points correspond to the models selected under each criterion.
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Param Regime 1 Regime 2

rQ∞ 0.0889 0.0773
(0.0196) (0.0189)

|λP1 | 0.9751 0.9904
(0.0265) (0.0138)

KP
PM 0.0998 0.0538 0.1253 0.0121

(0.0579) (0.0263) (0.0284) (0.0166)
−0.0853 −0.0303 −0.1006 0.0445
(0.0521) (0.0237) (0.0274) (0.0045)
0.0822 0.0004 −0.0532 0.0188

(0.0401) (0.0182) (0.0247) (0.0152)√
diag(ΣZ) 0.0061 0.0025

0.0054 0.0024
0.0041 0.0021
0.0041 0.0020
0.0040 0.0014

(a) Regime-dependent parameters

0.9301 0.0699

0.0352 0.9648

(b) Transition Probabilities πP

Table 5: ML estimates of selected parameters for the regime-switching model based
on an extended sample period 1971–2007. Asymptotic standard errors are given in
parentheses.
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