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Abstract 

A Bayesian asset-pricing test is derived that is easily computed in closed-form from the 
standard F-statistic.  Given a set of candidate traded factors, we develop a related test procedure that 
permits an analysis of model comparison, i.e., the computation of model probabilities for the 
collection of all possible pricing models that are based on subsets of the given factors.  We find that 
the recent models of Hou, Xue and Zhang (2015a,b) and Fama and French (2015a,b) are both 
dominated by five and six-factor models that include a momentum factor, along with value and 
profitability factors that are updated monthly.  Thus, although the standard value factor is redundant, 
a version that incorporates more timely price information is not.  
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Given the variety of portfolio-based factors that have been examined by researchers, it is 

important to understand how best to combine them in a parsimonious asset-pricing model for 

expected returns, one that excludes redundant factors. There are standard econometric techniques for 

evaluating the adequacy of a single model, but a satisfactory statistical methodology for identifying 

the best factor-pricing model(s) is conspicuously lacking in investment research applications. We 

develop a Bayesian procedure that is easily implemented and allows us to compute model 

probabilities for the collection of all possible pricing models that can be formed from a given set of 

factors.   

Beginning with the capital asset pricing model (CAPM) of Sharpe (1964) and Lintner (1965), 

the asset pricing literature in finance has attempted to understand the determination of risk premia on 

financial securities.  The central theme of this literature is that the risk premium should depend on a 

security’s market beta or other measure(s) of systematic risk.  In a classic test of the CAPM, Black, 

Jensen and Scholes (1972), building on the earlier insight of Jensen (1968), examine the intercepts in 

time-series regressions of excess test-portfolio returns on market excess returns.  Given the CAPM 

implication that the market portfolio is efficient, these intercepts or “alphas” should be zero.  A joint 

F-test of this hypothesis is later developed by Gibbons, Ross and Shanken (1989), henceforth GRS, 

who also explore the relation of the test statistic to standard portfolio geometry.2   

In recent years, a variety of multifactor asset pricing models have been explored.  While tests 

of the individual models are routinely reported, these tests often suggest “rejection” of the implied 

restrictions, especially when the data sets are large, e.g., Fama and French (2015b).  Sorely needed 

are simple statistical tools with which to analyze the various models jointly in a model-comparison 

framework.  This is an area of testing that has received relatively little attention, especially in the case 

of non-nested models.  The information that our methodology provides on relative model likelihoods 

complements that obtained from classical asset-pricing tests and is more in the spirit of the adage, “it 

takes a model to beat a model.” 3   

                                                       
 

2 See related work by Treynor and Black (1973) and Jobson and Korkie (1982). 
3 Avramov (2006) also explores Bayesian model comparison for asset pricing models.  As we explain in the next 

two sections, his methodology is quite different from that developed here.  A recent paper by Kan, Robotti and Shanken 
(2013) provides asymptotic results for comparing model R2s in a cross-sectional regression framework that does not 
impose traded-factor constraints and allows the zero-beta rate to differ from the riskfree rate.  Chen, Roll and Ross (1986) 
nest the CAPM in a multifactor model with betas on macro-related factors included as well in cross-sectional regressions.  
In other Bayesian applications, Avramov (2002) considers the question of which variables should be used to track 
expected return predictability over time; and Malatesta and Thompson (1993) apply methods in comparing multiple 
hypotheses in a corporate finance event study context. 
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  Like other asset pricing analyses based on alphas, we require that the benchmark factors are 

traded portfolio excess returns or return spreads.  For example, in addition to the market excess 

return, Mkt, the influential three-factor model of Fama and French (1993), hereafter, FF3, includes a 

book-to-market or “value” factor HML (high-low) and a size factor, SMB (small-big) based on stock-

market capitalization.  Although consumption growth and intertemporal hedge factors are not traded, 

one can always substitute (maximally correlated) mimicking portfolios for the non-traded factors.4  

While this introduces additional estimation issues, simple spread-portfolio factors are often viewed as 

proxies for the relevant mimicking portfolios, e.g., Fama and French (1996).   

We begin by analyzing the joint alpha restriction for a set of test assets in a Bayesian setting.5  

Prior beliefs about the extent of model mispricing are economically motivated and accommodate 

traditional risk-based views as well as more behavioral perspectives.  The posterior probability that 

the zero-alpha restriction holds is then shown to be an easy-to-calculate function of the GRS            

F-statistic.  Our related model-comparison methodology is likewise computationally straightforward.  

This procedure builds on results in Barillas and Shanken (2015), who highlight the fact that for 

widely-accepted criteria, model comparison with traded factors only requires an examination of each 

model’s ability to price the factors in the other models.    

It is sometimes observed that all models are necessarily simplifications of reality and hence 

must be false in a literal sense.  This motivates an evaluation of whether a model holds 

approximately, rather than as a sharp null hypothesis.  Additional motivation comes from recognizing 

that the factors used in asset-pricing tests are generally proxies for the relevant theoretical factors.7  

With these considerations in mind, we extend our results to obtain simple formulas for testing 

approximate models.  Implementation of this approach allows us to go beyond the usual test of an 

exact model and to obtain insight into a model’s goodness of fit.   

As an initial application of our framework, we consider all models that can be obtained using 

subsets of the FF3 factors, Mkt, HML and SMB.  A nice aspect of the Bayesian approach is that it 

permits comparison of nested models like CAPM and FF3, as well the non-nested models            

{Mkt HML} and {Mkt SMB}.  Over the period 1927-2013, alphas for HML when regressed on 

either Mkt or Mkt and SMB are highly “significant,” whereas the alphas for SMB when regressed on 

                                                       
 

4 See Merton (1973) and Breeden (1979), especially footnote 8. 
5 See earlier work by Shanken (1987b), Harvey and Zhou (1990) and McCulloch and Rossi (1991). 
7  Kandel and Stambaugh (1987) and Shanken (1987a) analyze pricing restrictions based on proxies for the 

market portfolio or other equilibrium benchmark. 
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Mkt or Mkt and HML are modest.  Our procedure aggregates all of this evidence, arriving at posterior 

probabilities of 50% for the two-factor model {Mkt HML} and 40% for FF3.    

In our main empirical application, we compare models that combine many prominent factors 

from the literature.  In addition to the FF3 factors, we consider the momentum factor, UMD (up 

minus down), introduced by Carhart (1997) and motivated by the work of Jegadeesh and Titman 

(1993).  We also include factors from the recently proposed five-factor model of Fama and French 

(2015a), hereafter FF5.  These are RMW (robust minus weak), based on the profitability of firms, and 

CMA (conservative minus aggressive), related to firms’ new net investments.  Hou, Xue and Zhang 

(2015a, 2015b), henceforth HXZ, have proposed their own versions of the size (ME), investment (IA) 

and profitability (ROE) factors, which we also examine.  In particular, ROE incorporates the most 

recent earnings information from quarterly data.  Finally, we consider the value factor HMLm from 

Asness and Frazzini (2013), which is based on book-to-market rankings that use the most recent 

monthly stock price in the denominator.  In total, we have ten factors in our analysis.  

Rather than mechanically apply our methodology with all nine of the non-market factors 

treated symmetrically, we structure the prior so as to recognize that several of the factors are just 

different versions of the same underlying construct.  Therefore, to avoid overfitting, we only consider 

models that contain at most one version of the factors in each category: size (SMB or ME), 

profitability (RMW or ROE), value (HML or HMLm) and investment (CMA or IA).  The extension of 

our procedure to accommodate such “categorical factors” amounts to averaging results over the 

different versions of the factors, with weights that reflect the likelihood that each version contains the 

relevant factors.     

Using data from 1972 to 2013 we find that the individual model with highest posterior 

probability is the six-factor model {Mkt IA ROE SMB HMLm UMD}.  Thus, in contrast to previous 

findings by HXZ and FF5, value is no longer a redundant factor when the more timely version HMLm 

is considered; and whereas HXZ also found momentum redundant, this is no longer true with 

inclusion of HMLm.  The timeliness of the HXZ profitability factor turns out to be important as well.  

The other top models are closely related to our best model, replacing SMB with ME, IA with CMA, 

or excluding size factors entirely.  There is also overwhelming support for the six-factor model (or 

the five-factor model that excludes SMB) in direct tests of the model against the HXZ and FF5 

models.  These model-comparison results are qualitatively similar for priors motivated by a market-

efficiency perspective and others that allow for large departures from efficiency.  



 5

Model comparison results assess the relative performance of competing models.  We also 

examine absolute performance for the top-ranked model and for the HXZ model, which fares better 

than the FF5 model.  These tests consider the extent to which the models do a good job of pricing a 

set of test assets and any excluded factors.  Although various test assets were examined, results are 

presented for two sets: 25 portfolios based on independent rankings by either size and momentum or 

by book-to-market and investment.  This evidence casts strong doubt on the validity of both models. 

The “rejection” of the six-factor model is less overwhelming, however, when an approximate version 

is considered that allows for relatively small departures (average absolute value 0.8% per annum) 

from exact pricing.  With average deviations of 1.2%, the approximate model is actually favored for a 

range of reasonable priors.  Thus, in this case, the approximation is favored over a multivariate 

regression model with unrestricted alphas.    

The rest of the paper is organized as follows.  Section 1 considers the classic case of testing a 

pricing model against a general alternative.  Section 2 then considers the comparison of nested 

pricing models and the relation between “relative” and “absolute” tests.  Bayesian model comparison 

is analyzed in Section 3 and Section 4 extends this framework to accommodate analysis with multiple 

versions of some factors.  Section 5 provides empirical results for various pricing models and  

Section 6 concludes.  Several proofs of key results are provided in an appendix. 

1.  Testing a Pricing Model Against a General Alternative  

Traditional tests of factor-pricing models compare a single restricted asset-pricing model to an 

unrestricted alternative return-generating process that nests the null model.  In the classic case 

considered by GRS, the model’s factors are traded zero-investment portfolios and the pricing 

restrictions constrain the factor model alphas to equal zero.  Bayesian tests of these restrictions have 

been developed by Shanken (1987), Harvey and Zhou (1990) and McCulloch and Rossi (1991).  The 

test that we develop here takes, as a starting point, a specification considered in the Harvey and Zhou 

paper.  This specification is appealing in that standard “diffuse” priors are used for the betas and 

residual covariance parameters.  Thus, the data dominate beliefs about these parameters, freeing the 

researcher to focus on informative priors for the alphas, the parameters that are restricted by the 
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models.8  Like the Bayesian studies mentioned above, our prior is calibrated in terms of its 

implications for the maximum achievable Sharpe ratio.      

That some form of informative prior is required for alpha, follows from observations in a 

widely cited article on Bayes factors by Kass and Raftery (1995).  They discuss the relevance of 

“Bartlett’s (1957) paradox, a situation in which an estimate is far from its null value, but even more 

unlikely under the alternative, thus yielding a Bayes factor that favors the null H0.  A consequence, 

they note, is that a prior under the alternative with a large variance will “force the Bayes factor to 

favor H0.”  They attribute this point to  Jeffreys (1961), who recognizes that, “to avoid this difficulty, 

priors on parameters being tested must be proper and not have too big a spread.”  What this means in 

our application is that, in evaluating an asset pricing model, a researcher needs to think about how 

large the deviations from the model might plausibly be if the model is, in fact false. 

One way to obtain a proper prior is to update a diffuse prior with a “minimal training-

sample,” i.e., a subset of the data that is just large enough to identify all the model parameters.  The 

resulting posterior distribution can then play the role of the prior in analyzing the remaining data.9  

Avramov (2006) adopts a variant of this approach in comparing asset pricing models.  Although 

computationally convenient, a potential concern is that such a prior for alpha could have a very large 

standard deviation, one that would be judged economically implausible, and might conflict with 

Jeffreys’ recommendation that the prior spread not be “too big.”  We provide an alternative 

framework in which the prior standard deviation is selected by the researcher and sensitivity to this 

choice can be examined.  In particular, different perspectives on the importance of behavioral 

phenomena in asset pricing can be brought to bear on the prior.    

Statistical Assumptions and Portfolio Algebra 

We focus on a factor model for test asset returns in which the residual returns have a 

multivariate normal distribution and standard Jeffreys priors are assumed for the factor model betas 

and the residual covariance matrix.  The key alpha parameters have a multivariate normal conditional 

prior with mean zero and covariance matrix proportional to the residual covariance matrix.  This 

specification was considered earlier by Harvey and Zhou (1990).  Here, we derive a formula for the 

                                                       
 

8 Using improper (diffuse) priors for “nuisance parameters” like betas and residual covariances that appear in 
both the null and alternative models, but proper (informative) priors under the alternative for parameters like alpha, is in 
keeping with Jeffreys (1961) and others.   

9 Berger and Pericchi (1996) suggest averaging such results across all minimal training samples as a means of 
increasing stability of the procedure.   
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resulting Bayes factor as a function of the standard Wald test statistic (equivalently, the GRS F-

statistic) for testing the restricted model in a classical framework.  This allows us to avoid the 

computational difficulties that were emphasized by Harvey and Zhou. 

First, we lay out the factor model notation and assumptions. The factor model is a multivariate 

linear regression with N asset excess returns, tr , and K factors, for each of T months: 

t t t tr f ~ N(0, ),        

where tr , t   and   are Nx1,   is NxK and tf  is Kx1.  The normal distribution of the t  is 

assumed to hold conditional on the factors and the t  are independent over time.  In matrix form, 

     R XB E           
where                                                                              (1.1)     

1

2

T

1 1

2 2

T T

r 1 f

r 1 f

r 1 f

R , X , B .










  

  

  

     
                     
     
     

  
and E =  

Here, R  is TxN, X  is Tx(K+1), B  is (K+1)xN and E is TxN.  The TxK matrix of factor data is 

denoted by F .  

We assume that the factors are zero-investment returns such as the excess return on the 

market or the spread between two portfolios, like the Fama-French value-growth factor.  Under the 

null hypothesis, 0H : 0  , we have the usual simple linear relation between expected returns and 

betas: 

    t tE(r ) E(f ) ,                          (1.2) 

where tE(f )  is the Kx1 vector of factor premia.   

The GRS test of this null hypothesis is based on the F-statistic with degrees of freedom N and 

T-N-K, which equals (T-N-K)/(NT) times the Wald statistic: 

  
 2 21

2 2

ˆ Sh(F,R) Sh(F)ˆ ˆ'
W T T

1 Sh(F) 1 Sh(F)

  
 

 
.                         (1.3) 

Here, 
12

F
ˆSh(F) F F



   is the maximum squared sample Sharpe ratio over portfolios of the factors, 

where F is the vector of factor sample means and  and  are maximum likelihood estimates ̂ ˆ
F
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(MLE’s) for the covariance matrices  and .  The term 2Sh(F,R)  is the corresponding sample 

measure based on both factor and asset returns.  One can also show that W is T/(T-K-1) times the 

maximum squared t-statistic for the regression intercept, taken over all possible portfolios of the test 

assets.  The population Sharpe ratios,  2sh(f )  and 2sh(f , r) , are based on the true means and 

covariance matrices.  

Under the alternative hypothesis, 1H : 0  , the F-statistic has a noncentral F distribution 

with noncentrality parameter   such that   

   2 1 2 21 Sh(F) / T ' sh(f , r) sh(f )                             (1.4) 

See Gibbons, Ross and Shanken (1989).  Under the null hypothesis   0 , the tangency portfolio 

corresponding to the factor and asset returns,  ( f , r), equals that based on the factors alone,  ( f ).  

Thus, the expected return relation in (1.2) is equivalent to this equality of tangency portfolios and 

their associated squared Sharpe ratios.   

A Bayesian F-test 

Since our primary focus is on the economically-important alpha restriction, following Harvey 

and Zhou (1990) we posit a standard diffuse prior for   and   as in Jeffreys (1961): 

(N 1)/2
P( , )      .                (1.5) 

Asset-pricing theory provides some motivation for linking beliefs about the magnitude of alpha to 

residual variance.  For example, Dybvig (1983) and Grinblatt and Titman (1983) derive bounds on an 

individual asset’s deviation from a multifactor pricing model that are proportional to the asset’s 

residual variance.  From a behavioral perspective, Shleifer and Vishny (1997) argue that high 

idiosyncratic risk can be an impediment to arbitraging away expected return effects due to 

mispricing.  

Pastor and Stambaugh (2000) also adopt a prior for  with covariance matrix proportional to 

the residual covariance matrix.  Building on ideas in McKinlay (1995), they stress the desirability of 

a positive association between  and  in the prior, which makes extremely large Sharpe ratio less 

 f



 
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likely, as implied by (1.4).10  The prior for  is concentrated at 0 under the null hypothesis.  Under 

the alternative, we assume a multivariate normal informative prior for  conditional on   and  : 

   P( | , ) MVN(0, k )     ,                           (1.6) 

where the parameter k > 0 reflects our belief about the potential magnitude of deviations from the 

expected return relation.11   

For an individual asset, (1.6) implies that k is the prior expectation of the squared alpha 

divided by residual variance, or the square of the asset’s information ratio.  By (1.4), this is the 

expected increment to the maximum squared Sharpe ratio from adding the asset to the given factors.  

In general, with a vector of N returns, the quadratic form 1(k )    is distributed as chi-square with 

N degrees of freedom, so the prior expected value of   1  is k times N.  Therefore, given a target 

value maxSh  for the square root of the expected maximum, the required k is 

 2 2

maxk Sh Sh(f) / N                                                           (1.7) 

Note that using the factor data to inform the prior is appropriate in this context since the entire 

statistical analysis is conditioned on f.  Alternatively, we can just think about the expected return 

relation and our assessment of plausible deviations from that relation.  This is similar to the approach 

in Pastor (2000).  If our subjective view is, say, that alphas should be less than 6% (annualized) with 

probability 95%, then we would want to choose k such that   is about 3% (annualized).  Given a 

residual standard deviation of 10% per annum, for example, the implied k would be 0.032/0.102 = 

0.09. 

Formally, the Bayes factor BF is the ratio of the marginal likelihoods: 0 1ML(H ) / ML(H ),  

where each ML is a weighted-average of the likelihoods over various parameter values.  The 

weighting is by the prior densities associated with the different hypotheses.  Since the parameters are 

integrated out, the ML can be viewed as a function of the data (factor and test-asset returns):  

         ( , ) ( , | , , ) ( | , ) ( , ) d d d            ML P F R P F R P P              (1.8) 

                                                       
 

10 Also see related work by Pastor and Stambaugh (1999) and Pastor (2000). 
11 Use of improper priors in model comparison can be problematic when the relevant dimensions differ across 

models.  In our analysis, we always work with the joint density for the same set of factors.  It follows that the total set of 
betas and residual covariance matrix parameters, for which the diffuse prior is employed, is the same for each model. 







 10

Here, the likelihood function is the joint density ( , | , , )  P F R  viewed as a function of the 

parameters.  The (unrestricted) 1ML(H )  is computed using the priors given in (1.5) and (1.6); the 

(restricted) 0ML(H )  also uses (1.5), but substitutes the zero vector for .   

 We can also view the test of 0H : 0   vs 1H : 0   in terms of the proportionality constant in 

the prior covariance matrix for  .  Thus, we have a test of the value 0 vs. the value k.  More 

generally, the null hypothesis can be modified to accommodate an approximate null that allows for 

(small) deviations from the exact model, as captured by the prior parameter k0 < k.  The usual exact 

null is obtained with k0 = 0.  We can now state our main result. 

Proposition 1.  Given the factor model in (1.1) and the prior in (1.5)-(1.6), the Bayes factor for 

0H : 0   vs 1H : 0   equals  

(T K)/2

0

1 R

SML(H ) 1
BF

ML(H ) Q S


 

    
 

                         (1.9) 

where S and SR are the NxN cross-product matrices of the OLS residuals with  unconstrained or 

constrained to equal zero, respectively.  The scalar Q is given by 

        

1

(T K)/2 N/2

1
ˆ ˆQ exp ( ) ( ) P( | )P( | F,R) d d

2a

a k
1 (W / T) 1 ,

(a k) a

     

  

        
 

           

 
             (1.10)  

where  is the posterior density for  and  2a 1 Sh(F) / T  .  W is given in (1.3) and 

equals the GRS F-statistic times NT/(T-N-K).  Letting Qk0 be the value of Q obtained with prior 

value k0, the BF for k0 vs k is  

      
0k ,k k0BF Q / Q                                       (1.11) 

Proof.  See Appendix B.12, 13 

                                                       
 

12 Harvey and Zhou derive (1.9) and the integral expression for Q.  The function of W in (1.10) is our 
simplification, while (1.11) is both a simplification and generalization of (1.9). 

13 The formula is identical, apart from minor differences in notation, to the Bayes factor that Shanken (1987b) 
derives by conditioning directly on the F-statistic, rather than on all the data, for simplicity.  Thus, surprisingly, it turns 
out that this simplification entails no loss of information under the diffuse prior assumptions made here. 



( | , )P F R 
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 It is easy to verify that BF is a decreasing function of W; the larger the test statistic, the 

stronger is the evidence against the null that   is (approximately) zero.  When N = 1, W equals     

T/(T-K-1) times the squared t-statistic for the intercept in the factor model.  Other things equal, the 

greater the magnitude and precision of the intercept estimate, the bigger is that statistic, the lower is 

BF and the weaker is the support for the null.  For N > 1, the same conclusion applies to the 

maximum squared t-statistic over all portfolios of the test assets.   

In terms of the representation in (1.9), the BF decreases as the determinant of the matrix of 

restricted OLS sums of squared residuals increases relative to that for unrestricted OLS, suggesting 

that the zero-alpha restriction does not fit the data.  BF also decreases as Q increases, where a large Q 

indicates a relatively small distance between the alpha estimate and the values of alpha anticipated 

under the prior for the unrestricted model.   Q is always less than one since the exponent in (1.10) is 

uniformly negative.   As the ratio of determinants is likewise less than one, a BF favoring the null 

(BF > 1) occurs when Q is sufficiently low, i.e., the prior for alpha under the alternative is 

“inconsistent” with the estimate.  The simple formula for Q will also facilitate the model comparison 

calculations in Section 3. 

2.  Relative versus Absolute Model Tests 

In the previous section, we analyzed a test of a factor-pricing model against a general 

alternative (an unrestricted multivariate regression model).  We refer to this as an absolute test of the 

fit of a model.  In this section, we address the testing of one factor-pricing model against another 

model, what we call a relative test.  Assume as in the previous section, that there are K factors in all 

and N test assets of interest.  In general, we consider models corresponding to all subsets of the 

factors, with the stipulation that the market factor, Mkt, is always an included factor.  This is 

motivated by the fact that the market portfolio represents the aggregate supply of securities and, 

therefore, holds a unique place in portfolio analysis and the equilibrium pricing of assets, e.g., the 

Sharpe-Lintner CAPM and the Merton (1973) intertemporal CAPM.14      

In the present setting,  the vector f corresponds to a subset of L-1 of the K-1 non-market 

factors.  The model associated with the L factors, {Mkt, f} is denoted by M and the K-L factors 

excluded from M are denoted by f*.  A valid model M will price the factor returns f* as well as the 

                                                       
 

14 See Fama (1996) for an analysis of the role of the market portfolio in the ICAPM. 
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test asset returns r.  Thus, the alphas of f* and r regressed on {Mkt, f} equal zero under the model.  

However, the statistical analysis is greatly facilitated by using an equivalent representation of M.  Let 

    * * * *f [M kt, f ]                    (2.1a)   

and              
*

r r rr [M kt, f , f ]                   (2.1b) 

be multivariate regressions for f* and r.  Note that the model in (2.1b), which we will call Ma, 

includes all K factors.  Barillas and Shanken (2015) show that the model M, which is nested in Ma, 

holds if and only if * 0   and r 0  , i.e., if and only if * 0   and Ma holds for the test assets.  

We use this characterization of M below. 

 For example, consider CAPM as nested in the Fama-French (1993) three-factor model (FF3).  

In this case, the usual alpha restrictions of the single-factor CAPM are equivalent to the one-factor 

intercept restriction for the excluded-factor returns, HML and SMB, and the FF3 intercept restriction 

for the test-asset returns.  As the test-asset restrictions are common to both models, the models differ 

only with respect to the excluded-factor restrictions.  If those restrictions hold, CAPM is favored over 

FF3 in the sense that the same pricing is achieved with fewer factors – a more parsimonious model.  

Otherwise, FF3 is preferred since it does not impose the additional restrictions that are violated.  

Alternatively, as Barillas and Shanken note, we can think about comparison in terms of a modified 

Hansen-Jagannathan (1997) distance, which ends up being equivalent to a factor-portfolio efficiency 

criterion. 15  If * 0  , the tangency portfolio (and associated Sharpe ratio) based on all the factors, 

i.e., spanned by Mkt, HML and SMB, can be achieved through investment in Mkt alone.  If * 0  , a 

higher (squared) Sharpe ratio can be obtained by exploiting all of the factor investment opportunities. 

Three asset-pricing tests (classical or Bayesian) naturally present themselves in connection 

with the nested model representation of M.   We can conduct a test of the all-inclusive model Ma with 

factors (Mkt, f , f*) and left-hand-side returns r.  Also, we can test M with factors f and left-hand-side 

returns consisting of test assets r plus the excluded factors f*.  These absolute tests pit the models (Ma 

or M) against unrestricted alternatives for the distribution of the left-hand-side returns.  Finally, we 

can perform a relative test of M vs Ma with factors f and left-hand-side returns f*.  There is a simple 

relation between the Bayesian versions of these tests.  We denote the Bayes factor for Ma in the first 

                                                       
 

15 The modification, due to Kan and Robotti (2008), is suitable in the excess-return setting with traded factors. 
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test as 
a

abs

MBF , for M in the second test as abs
MBF , and for M (versus Ma) in the third test as relBF  .  

Given some additional assumptions similar to those made earlier, we then have 

Proposition 2.  Assume that the multivariate regression of f* on (Mkt, f) in (2.1a) and r on (Mkt, f, f*) 

in (2.1b) satisfy the condition that the residuals are independently distributed over time as 

multivariate normal with mean zero and constant residual covariance matrix.  The prior for the 

regression parameters is of the form in (1.5) and (1.6), with the priors for (2.1a) and (2.1b) 

independent.  Then the BFs are related as follows: 

     a

abs rel abs
M MBF BF BF                                 (2.2) 

Proof.  The ML is the expectation under the prior of the likelihood function.  Write the joint density 

(likelihood function) of factor and test-asset returns as the density for f* given (Mkt, f), times the 

conditional density for r given (Mkt, f, f*).  Using the prior independence assumptions, the prior 

expectation of the product is the product of the expectations.  By the earlier discussion, under M, both 

densities are restricted (zero intercepts) in the numerator, whereas only the density for r is restricted 

under Ma.  Therefore, letting the subscripts R and U stand for restricted and unrestricted         

densities, abs
MBF  * *

R R U U{M L (f ) M L (r)} / {M L (f ) M L (r)}   and 
a

abs *

M U RBF {ML (f ) ML (r)} / 

*

U U{ML (f ) ML (r)} , where the conditioning variables have been suppressed to simplify the notation. 

Given that BFrel {ML
R

(f *)ML
R

(r)} /{ML
U

(f *)ML
R

(r)} the equality in (2.2) is easily verified. 

□ 

Proposition 2 tells us that the absolute support for the nested model M equals the relative 

support for M compared to the larger (less restrictive) model Ma times the absolute support for Ma.  

Equivalently, the relative support for M vs. Ma can be backed out from the absolute BFs, as 

a

abs abs
M MBF / BF .  Thus, whether we compare the models directly or relate the absolute tests for each 

model, the result is the same.  This reflects the fact that, extending the argument in Barillas-Shanken 

(2015), the impact of the test-asset returns r on the absolute tests, RML (r) , is the same for each 

model and so cancels out in the model comparison. We refer to this as test-asset irrelevance. 

Testing CAPM vs. FF3: An Illustration  

To illustrate these ideas, suppose we want to test whether Ma, here the FF3 model with K = 3, 

is superior to M = CAPM with L = 1.  In this case, f is the empty set (no non-market factors in 
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CAPM) and there are 2 (K–L) excluded factors, f* = (HML, SMB).  Since the test assets are 

irrelevant, the pertinent restriction is that the CAPM alphas of SMB and HML are both zero.  Thus, 1 

plays the role of K and 2 the role of N in the required application of Proposition 1.  We evaluate the 

CAPM restriction from both the classical and Bayesian perspectives, using monthly factor data for 

the period 1927 to 2013 obtained from Ken French’s website (T = 1004).  The GRS statistic is 4.56 

with associated p-value 0.01, statistically significant in the conventional sense.  The corresponding 

Wald statistic is then 2(1044)/(1044 - 2 - 1)  times 4.56 or W = 9.14.  

 To implement the Bayesian approach, we need to specify the value of k in the prior.  Since the 

full model Ma = FF3 includes 3 factors and the nested model M consists of the market factor only, 

adaptation of the earlier formula for k in (1.7) gives 

 2 2

maxk Sh Sh(Mkt) / (3 1)   .               (2.3) 

The divisor is 2 here since the two excluded factors are added to the market factor and play the role 

of left-hand-side assets.  As in Section 1, using the Mkt data to inform the prior is appropriate here 

since the entire statistical analysis is conditioned on the Mkt returns.  Similar remarks will apply to 

the general model-comparison analysis of the next section. 

 In our example, the question is, how big do we think the Sharpe ratio increase might be as a 

result of adding HML and SMB to the market index?  We allow for a 25% increase in this 

illustration, i.e., maxSh 1.25 Sh(Mkt)  .  More precisely, the square root of the prior expected squared 

Sharpe ratio is 1.25 time the market’s squared ratio.  With a value of 0.115 for Sh(Mkt) ,                   

a = (1 + 0.1152)/1044 = 0.00097 and (2.3) gives k = 0.0037.  Using (1.6), this value of k translates 

into (annualized) prior standard deviations of 2.51% and a 2.23% for the HML and SMB CAPM 

alphas, respectively.  The latter is smaller since the SMB residual variance in the regression on Mkt is 

lower than that of HML over the full period.    

Given this prior specification and letting k0 = 0, the BF for the null CAPM vs. the alternative 

FF3 is Q0/Q in (1.10)-(1.11), which equals 

(T 1)/2

2/2
a

1 (W / T)
k(a k)

1
1 (W / T) a


          
 
 

= 

(1004 1)/2

2/2
0.097

1 ( /1044)
(0.097 )

1
1 ( /1044)

9.14
0.370.37

0.04 979.1


          
 
 
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or 0.13.   Thus the data (viewe d through the lens of the prior), strongly favor the conclusion that the 

two alphas are not both zero, by odds of more than 7 to 1.  Using the fact that the probability for the 

alternative is one minus the probability for the null, it follows that the posterior probability that the 

null is true is BF/(1 + BF) when the prior probabilities for both models are 0.5.  This gives a posterior 

probability of 11.6% for CAPM with the BF of 0.13.  As the p-value calculation does not even 

consider the alternative hypothesis, the 1% p-value cannot meaningfully be compared to this 

posterior probability.16  Later, we provide an example in which the posterior probability favors the 

null, even though the p-value is low by conventional standards.  

3.  General Model Comparison 

In the previous section, we saw how to use an asset-pricing test against a general alternative to 

compare two nested factor-pricing models.  Now suppose we wish to simultaneously compare a 

collection of asset pricing models, both nested and non-nested.  From a portfolio perspective, it is 

clear that the squared Sharpe ratio will always be maximized with all factors included, as in model 

Ma.  The question that is being addressed when we consider the various models is whether that 

maximum can still be attained with a proper subset of the factors, one as small as possible.  In other 

words, are some of the factors in Ma redundant?  Fama (1998) considers a related hypothesis in 

identifying the number of priced state variables in an intertemporal CAPM setting. 

Our methodology exploits the fact that the marginal likelihood (ML) for each model is the 

product of an unrestricted ML for the included factors and a restricted (alpha = 0) ML for the factors 

that are excluded and must be priced by the model.  Given our analysis of the Bayesian F-test, these 

likelihood measures are easily calculated, with excluded factors playing the role of left-hand-side 

returns.  Thus, inference about model comparison ends up being based on an aggregation of the 

evidence from all possible multivariate regressions of excluded factors on factor subsets.17 

We use braces to denote models, which correspond to subsets of the given factors.  For 

example, starting with the FF3 factors, there are four models that include Mkt: CAPM, FF3 and the 

non-nested two-factor models {Mkt HML} and {Mkt SMB}.  Given the MLj for each model Mj with 

prior probability P(Mj), the posterior probabilities conditional on the data D are given by Bayes’ rule 

as 

                                                       
 

16 Shanken (1987b) discusses this issue in detail.   
17  A frequentist approach to asset-pricing model comparison might be developed along the lines of Vuong 

(1989), but we leave that to future work. 
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   P(Mj | D) =      ij j i iML P M / ML P M  ,                          (3.1) 

where D refers to the sample of all factor and test-asset returns, F and R.  

 One distinctive feature of our approach, as compared to Avramov (2006), is that the factors 

that are not included as right-hand-side explanatory variables for a given model play the role of left-

hand-side dependent returns whose pricing must be explained by the model’s factors.18  This is 

important from the statistical standpoint, as well as the asset pricing perspective, since (3.1) requires 

that the posterior probabilities for all models are conditioned on the same data.  Thus, each model’s 

restrictions are imposed on the excluded factors f* as well as the test assets r in calculating the ML, 

whereas the ML for the included factors f is based on their unrestricted joint density.  Therefore, we 

also need to consider the multivariate regression 

    f Mkt     ,               (3.2) 

where the residuals are again independently distributed over time as multivariate normal with mean 

zero and constant residual covariance matrix.  Now, by an argument similar to that used in deriving 

Proposition 2, we obtain  

Proposition 3.  Assume that the multivariate regressions of f on Mkt in (3.2), f* on (Mkt, f) in (2.1a) 

and r on (Mkt, f, f*) in (2.1b) satisfy the distributional conditions discussed previously.  The prior for 

the parameters in each regression is of the form in (1.5) and (1.6), with independence between the 

priors for (3.2), (2.1a) and (2.1b) conditional on the sample of Mkt returns.  Then the ML for a model 

M is of the form 

  ML(M) = MLU(f | Mkt) x MLR(f* | Mkt, f) x MLR(r | Mkt, f, f*),                 (3.3) 

where the unrestricted and restricted (alpha = 0) regression MLs are obtained using (A.3) and (A.8) 

of Appendix A. 

The value of k in the prior for the intercepts in the unrestricted regressions is determined as in 

(2.3), but using the total number of factors K in the denominator, with Shmax corresponding to all K 

factors as well.  It follows from the discussion after (1.6) that k is the expected (under the alternative) 

increment to the squared Sharpe ratio at each step from the addition of one more factor.  By 

concavity, therefore, the increase in the corresponding Shmax declines as more factors are included in 

the model.  Although we think this is a reasonable way to specify the prior, the results are not 
                                                       

 
18 The phrase, “either you’re part of the problem or part of the solution” comes to mind. 
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sensitive to alternative methods we have tried for distributing the total increase in the squared Sharpe 

ratio.   

Given (3.3), the posterior model probabilities in (3.1) can now be calculated by substituting 

the corresponding ML(M) for  each ML.  We use uniform prior model probabilities to avoid favoring 

one model or another, which seems desirable in this sort of research setting.  Thus, the impact of the 

data on beliefs about the models is highlighted.  Other prior assumptions could easily be explored, 

however.  Note that, since the last term in (3.3) is the same for all models, it cancels out in the 

numerator and denominator of (3.1).  Thus, test assets are irrelevant for model comparison, as in the 

nested case of Proposition 2.   

Model Probabilities with the Fama-French (1993) Factors  

Over the period 1927 to 2013, we saw in the earlier illustration, that CAPM is rejected in 

favor of FF3 based on the conventional GRS test with p-value 0.01.  The Bayes factor for CAPM vs.  

FF3 was 0.13.  Now we compare these models simultaneously with the two-factor models {Mkt 

HML} and {Mkt SMB}.  As earlier, the prior assumes that Shmax = 1.25xSh(Mkt) for the three 

factors, with prior probability of 1/4 assigned to each of the four models.   

Before conducting the formal Bayesian analysis, we examine some additional regression 

evidence - annualized alpha estimates with t-statistics in parentheses.  Recall that the BF in favor of 

the zero-null hypothesis for a single dependent return is a decreasing function of this t-statistic.  The 

alpha of HML on Mkt is large at 3.65% (2.85), while the alpha of SMB on Mkt is 1.34% (1.18).  For 

SMB on Mkt and HML, the alpha is just 1.18% (1.04) and for HML on Mkt and SMB, it is 3.57% 

(2.79).  The large HML alphas are evidence against CAPM and {Mkt SMB}, but consistent with both 

the two-factor model {Mkt HML} and FF3.  The modest SMB alphas point to the two-factor model, 

however.  But how strongly should we view this suggestion?   

The Bayesian approach aggregates all of the evidence reflected in the marginal likelihoods 

and summarizes the results in terms of posterior model probablities.  For example, using (3.3), the 

ML for the model {Mkt HML} equals the unrestricted ML for HML conditional on the market (the 

HML alpha is unconstrained) times the restricted ML for SMB conditional on Mkt and HML (the 

SMB alpha is constrained to be zero) times the restricted ML for the test assets conditional on all 

three factors (test-asset alphas are zero).  A similar calculation for each model results in model 

probabilities of 50.6% for {Mkt HML}, 39.6% for FF3, 5.2% for CAPM and 4.6% for {Mkt SMB}.  

In this application, the restricted model {Mkt HML} comes out on top, but in other situations the 
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unrestricted model that includes all of the factors can dominate the competition.  Also note that the 

ratio of probabilities for CAPM and FF3 is 0.13, equal to the BF obtained earlier from the Bayesian 

F-test.     

4.  Comparing Models with Categorical Factors 

Often, in empirical work, several of the available factors amount to different implementations 

of the same underlying concept, for example size or value.  In such cases, to avoid overfitting, it may 

be desirable to structure the prior so that it only assigns positive probability to models that contain at 

most one version of the factors in each category.  In this section, we extend our analysis to 

accommodate this perspective.   

A Categorical Example  

Our main empirical application presented later in Section 5 will include data for four factor 

categories.  This data is available over the period 1972-2013.  In the present illustration of the 

methodology, we examine a subset of those factors over the same period: two size factors, SMB from 

FF5 and ME from HXZ, along with Mkt and HML.  The size factors differ in terms of the precise 

sorts used to construct the “small” and “big” sides of the spread.  We refer to Size as a categorical 

factor, in this context, in contrast to the actual factors SMB and ME.  Similarly, models in which 

some of the factors are categorical and the rest are standard factors are termed categorical models.   

To demonstrate the basic idea, consider categorical models based on the standard factors Mkt 

and HML, and the categorical factor Size.  As earlier, there are four categorical models, CAPM, 

{Mkt HML} {Mkt Size} and {Mkt HML Size), each with prior probability 1/4.19  We have two 

versions of the factors, w1 = (Mkt HML SMB) and w2 = (Mkt HML ME), and can conduct separate 

model comparison analyses with each over the 1972-2013 period.  These separate analyses employ 

the methodology of Section 3 with all standard factors.  The posterior model probabilities conditional 

on w1 are {Mkt HML} 55.9%, {Mkt HML SMB} 43.5%, CAPM 0.4% and {Mkt SMB} 0.2%.  

Conditional on w2, we have {Mkt HML ME} 50.7%, {Mkt HML} 48.6%, {Mkt ME} 0.3% and 

CAPM 0.3%.  Now the question is, how should we aggregate these two sets of probabilities to obtain 

posterior probabilities for all six models?   

                                                       
 

19 The value of k in the prior now corresponds to a potential 50% increase in the Sharpe ratio relative to that of 
the market when the categorical model contains all three factors. 
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First, suppose we assign prior probability 1/2 to each w, i.e., to each version of the factors, 

and conditional prior probabilities of 1/4 for the four models in each w.  The unconditional prior 

probabilities for CAPM and {Mkt HML}, the two models common to both versions w1 and w2, are 

then (1/2)(1/4) + (1/2)(1/4) = 1/4 in each case.  In contrast, the probability for {Mkt SMB}, which is 

associated with just one version of the factors, is (1/2)(1/4) + (1/2)(0) = 1/8 and likewise for (Mkt 

ME} and the three-factor models.  Thus, this simple prior specification effectively splits the 

categorical model probabilities for {Mkt Size} and {Mkt HML Size), equally between the two 

different versions of these categorical models, as desired.   

 The proposition below derives a formula for the posterior probability of each version of the 

factors and shows that the final model probabilities can be obtained by applying these weights to the 

conditional model probabilities above.  The weights in this case are 47.8% for w1 and 52.2% for w2.  

The probability for {Mkt HML} is then (47.8%)(55.9%) + (52.2%)(48.6%) = 52.1%.  For {Mkt HML 

ME}, which is only associated with the second version of the factors, it is (47.8%)(0) + 

(52.2%)(50.7%) = 26.5%.  The probability is 20.8% for {MKT HML SMB} and less than 1% for the 

remaining models.  Note that the probabilities for models that include SMB are fairly similar to those 

for models that include ME.  This makes sense since the correlation between the two size factors is 

very high (0.98).  From the categorical model perspective, we have probability 52.1% for {Mkt 

HML}, 26.5% + 20.8% = 47.3%  for {Mkt HML Size} and less than 1% for the remaining models.20   

Aggregation over Different Versions of the Factors  

Assume the categorical models consist of up to K factors, KC of which are categorical factors.  

In the example above, K = 3 and KC = 1.  In general, there are CK2  versions of the K factors (w1 and 

w2 above), each with prior probability CK1 / 2 .  The K 12   models associated with a given version are 

assigned uniform conditional prior probabilites of K 11/ 2  .  Let M be a version of a categorical model 

MC with LC categorical factors.  The number of factor versions that include model M is    CCK L2  (LC 

slots are taken), so the fraction of versions that include M is CCC CK L K L2 / 2 1/ 2  .  Thus, the total 

probability of K 11/ 2   for MC is split evenly between the CL2  versions of that categorical model, of 

which M is one.  In the example, LC = 0 for {Mkt HML} and LC = 1 for {Mkt ME}.  With K = 3, the 

prior probability for the first model is K 11/ 2  = 1/22 = 1/4, while the probability of the second is 1/2    

( CL1 / 2 ) of that, or 1/8.  

                                                       
 

20 Readers less interested in the methodological details can skip to the empirical Section 5 at this point. 
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As mentioned earlier, it is essential that the MLs for the various models be based on the same 

data.  This requires a simple extension of (3.3).  Take the model {Mkt ME), for example.  In the 

present context, the excluded factors consist of the non-categorical factor HML and the other version 

of the categorical Size factor, SMB.  We write the ML as the unrestricted ML for ME given Mkt, 

times the restricted ML for HML given Mkt and ME, times the restricted ML for SMB given all three 

factors in the version w2 = (Mkt HML ME).  Thus, the extra ML term at the end is for the second 

version of the size factor, which is treated like a test asset conditional on w2.  Similarly, for w1, the 

extra ML term at the end is for ME given (Mkt HML SMB).   

In general, given a K-factor version w, let w* denote the KC alternate versions of the 

categorical factors (w2
*

 would consist of SMB above).  Hence there are K + KC factors in all (3 + 1 = 

4 in the example).  F refers to all of this factor data.  For a model M with non-market factors f, all 

contained in w, let f* now denote the factors in w that are excluded from M.21  Let the prior for the 

parameters in the regression of w* on (Mkt, f, f*) take the usual form based on (1.5) and (1.6), again 

independent of the other components.  The test-assets r are now regressed on (Mkt, f, f*, w*), i.e., all 

the factors, and so the corresponding ML will cancel out in all probability calculations, as earlier.  

This term will be ignored going forward.  Therefore, the counterpart of (3.3) is now 

          ML(M | w) = MLU(f | Mkt) x MLR(f* | Mkt, f) x MLR(w* | Mkt, f, f*).                (4.1) 

For each w, the conditional posterior probabilities can then be obtained as in (3.1).  Note that the ML 

term corresponding to w* will drop out of these computations that are conditional on w.  The w* term 

will differ across the various w’s, however, and so will affect the posterior probabilities for the w’s, 

as we now see. 

Proposition 4.  The unconditional (not conditional on w) posterior model probabilities are obtained as 

follows.  First, calculate ML(M | w) in (4.1) for each version w of the factors and each model in w.  

Then calculate the ML for  each w as  

    ML(w) = EM|w{ML(M | w)}.              (4.2a) 

where M|w refers to the uniform prior over the models in w.  Next, calculate the unconditional 

probability of the data, 

       P(F) = Ew{ML(w)},               (4.2b) 

by averaging ML(w) over the uniform prior P(w).  The posterior probability for each w is then 

                                                       
 

21 f* will differ across the different w’s that include the factors f (a w subscript is implicit). 
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               P(w | F) = ML(w)P(w)/P(F).              (4.2c) 

Finally, the uncondition probability for M is 

          P(M | F) = Ew|F{P(M  | w, F)},                       (4.2d) 

where P(M | w, F) is the conditional posterior probability for M given factor version w and the 

expectation is taken with respect to the versions posterior P(w | F). 

Proof.  A general principle that we use repeatedly is P(Y) = EX{P(Y|X)}.  Also, by definition,   

ML(M | w) = P(F | M, w) and ML(w) = P(F | w).  In (4.2a), M plays the role of X and F the role of Y, 

while we condition on w throughout in the “background.”  In (4.2b), w plays the role of X and F the 

role of Y.  (4.2c) is just Bayes’ theorem.  Finally, w plays the role of X and M the role of Y in (4.2d),  

while we condition on F throughout in the background.  □ 

5 Empirical Results 

In this section, we first present model-comparison evidence and then Bayesian F-test results. 

 5.1 Empirical Results on Model Comparison 

   Model probabilities are shown at each point in time to provide an historical perspective on 

how posterior beliefs would have evolved as the series of available returns has lengthened.  

Examining different sets of factors provides additional perspective, as the collection of factors 

considered in the research community has expanded over time.  Thus it is interesting to see how this 

affects posterior beliefs about the models.  First, we simultaneously compare all the models that can 

be formed using the FF3 factors Mkt, SMB and HML.  This small example extends the results shown 

in Section 3 and serves as a good illustration of our methodology.  We then conduct our main 

empirical analysis, which compares models that can be formed from ten prominent factors in the 

literature.  Since there are four categorical factors with two versions each, an admissible model will 

have at most six factors.   

 Our benchmark scenario for all model comparison exercises in this section assumes that Shmax 

= 1.5 x Sh(Mkt), i.e., the square root of the prior expected squared Sharpe ratio for the tangency 

portfolio based on all six factors is 50% higher than the Sharpe ratio for the market only.  Given the 

discussion in Section 3, this is sufficient to determine the implied Shmax values as we expand the set 

of included factors from one to all six, leaving the intercepts unrestricted.  In particular, for the three-

factor model below, the corresponding multiple of Sh(Mkt) is 1.27, slightly higher than the 1.25 

value used earlier.  We think of the 1.5 six-factor choice of multiple as a prior with a risk-based tilt, 



 22

assigning relatively little probability to extremely large Sharpe ratios.  Later, we examine the 

sensitivity of posterior beliefs to this assumption, as we also explore multiples corresponding to a 

more behavioral perspective and one with a lower value.22 

Model Probabilities with the Three Fama-French (1993) Factors 

 In previous sections, we presented results using these three factors to illustrate our 

methodology.  Recall that there are four models in all: CAPM, FF3 and the two-factor models     

{Mkt HML} and {Mkt SMB}. We now provide evidence on the formal model comparison among 

these four competing models over time.  As earlier, we employ data from January 1927 to December 

2013.  Figure 1 presents the results of this exercise.  The top panel shows the model probabilities 

while the bottom panel gives cumulative factor probabilities, i.e., the probability that each factor is 

included in the best model.    

 Since we start with equal prior probabilities for each model, it is not surprising that it takes a 

while to see a substantial spread in the posterior probabilities.  The best-performing model since the 

mid-1980s has been {Mkt HML}, followed closely by FF3.  The probabilities for these models are 

51.3% and 39.1%, respectively, at the end of the sample.  It is also of interest to note that the full 

model (FF3) need not have the highest probability.  The CAPM and {Mkt SMB} probabilities 

generally decline after 1980 and are quite low at the end.  However, CAPM would have been 

perceived as the best-performing model in the 1950s and 1960s, which interestingly was a time when 

the Fama-French model ranked last.  In related evidence, Fama and French (2006) and Ang and Chen 

(2007) find that CAPM works well for B/M-sorted portfolios before 1963.  

The cumulative factor probabilities are shown in the bottom panel.  For each factor, this is the 

sum of the posterior probabilities for models that include that factor.  The probabilities at the end of 

the sample are 90.3% for HML, reflecting its inclusion in the two top models, and 43.6% for SMB.  

Of course, the probability is one for Mkt by assumption. 

 

[Figure 1] 
 

          The empirical analysis above was based on the prior assumption Shmax = 1.5 x Sh(Mkt) for six 

factors, including the market.  Now we explore the sensitivity of our full-sample results to different 

prior assumptions - multiples of 1.25, 1.5, 2, and 3.  Table 1 presents the full-sample results for the 
                                                       

 
22 MacKinlay (1995) analyzes Sharpe ratios under risk-based and non-risk-based alternatives to the CAPM. 
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three Fama-French factors.  The sample Sharpe ratio for the market is 0.115 over the 1927-2013 

period, while the FF3 Sharpe multiple is 1.23, close to the 1.27 implied by our baseline prior 

scenario.  With the three Fama-French factors, the top model is always {Mkt HML}, the posterior 

probabilities rising from 44.9% to 65.3% as Shmax increases.  At the same time, the probabilities for 

FF3 decline from 42.2% to 23.1%.  Overall, although we see some variation in the model 

probabilities for different priors, the rankings of the models are consistent.  

 

[Table 1] 

 

Model Probabilities with Ten Prominent Factors 

We now consider a total of ten candidate factors.  First, there are the traditional FF3 factors 

Mkt, HML and SMB plus the momentum factor UMD.  To these, we add the investment factor CMA 

and the profitability factor RMW of Fama and French (2015a).  Finally, we also include the size ME, 

investment IA and profitability ROE factors in Hou, Xue and Zhang (2015a, 2015b), as well as the 

value factor HMLm from Asness and Frazzini (2013).  The size, profitability and investment factors 

differ based on the type of stock sorts used in their construction.  Fama and French create factors in 

three different ways.  We use what they refer to as their “benchmark” factors.  Similar to the 

construction of HML, these are based on independent (2x3) sorts, interacting size with operating 

profitability for the construction of RMW, and separately with investments to create CMA.  RMW is 

the average of the two high profitability portfolio returns minus the average of the two low 

profitability portfolio returns.  Similarly, CMA is the average of the two low investment portfolio 

returns minus the average of the two high investment portfolio returns.  Finally, SMB is the average 

of the returns on the nine small-stock portfolios from the three separate 2x3 sorts minus the average 

of the returns on the nine big-stock portfolios.  

Hou, Xue and Zhang (2015a) construct their size, investment and profitability factors from a 

triple (2 x 3 x 3) sort on size, investment-to-assets, and ROE.  More importantly, the HXZ factors use 

different measures of investment and profitability.  Fama and French (2015a) measure operating 

profitability as NIt-1/BEt-1, where NIt-1 is earnings for the fiscal year ending in calendar year t-1, and 

BEt-1 is the corresponding book equity.  HXZ use a more timely measure of profitability, ROE, which 

is income before extraordinary items taken from the most recent public quarterly earnings 

announcement divided by one-quarter-lagged book equity.  IA is the annual change in total assets 

divided by one-year-lagged total assets, whereas investment used by Fama and French is the same 
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change in total assets from the fiscal year ending in year t-2 to the fiscal year in t-1, divided by total 

assets from the fiscal year ending in t-1, rather than t-2.  In terms of value factors, HMLm is based on 

book-to-market rankings that use the most recent monthly stock price in the denominator.  This is in 

contrast to Fama and French (1993), who use annually updated lagged prices in constructing HML.  

The sample period for our data is January 1972 to December 2013.  Some factors are available at an 

earlier date, but the HXZ factors start in January of 1972 due to the limited coverage of earnings 

announcement dates and book equity in the Compustat quarterly files. 

Rather than mechanically apply our methodology with all nine of the non-market factors 

treated symmetrically, we apply the framework of Section 4, which recognizes that several of the 

factors are just different versions of the same underlying concept.  Therefore, we only consider 

models that contain at most) one version of the factors in each category: size (SMB or ME), 

profitability (RMW or ROE), value (HML or HMLm) and investment (CMA or IA).  We refer to size, 

profitability, value and investment as categorical factors, in this context, in contrast to the actual 

factors employed in the various models.  Similarly, models in which some of the factors are 

categorical and the rest are standard factors are termed categorical models.  The standard factors in 

this application are Mkt and UMD.  Since each categorical model has up to six factors and Mkt is 

always included, there are 32 (25) possible categorical models. Given all the possible combinations of 

UMD and the different types of size, profitability, value and investment factors, we have a total of 

162 models under consideration. 

The top panel in Figure 2 shows posterior probabilities for the individual models, which were 

obtained under our baseline prior that allows for a multiple of 1.5 times the market Sharpe ratio.  We 

find that quite a few of the individual models receive non-trivial probability, the best (highest 

probability) model being the six-factor model {Mkt SMB ROE IA HMLm UMD}.  The second-best 

individual model replaces IA with CMA, the third-best uses ME instead of SMB and the sixth one 

uses both CMA and ME, as opposed to IA and SMB.  Both the fourth and fifth best models are five-

factor models that do not have a size factor and differ only in their investment factor choice.  The top 

seven models all include UMD.  All of these models fare better than FF5 and the four-factor model of 

HXZ. 

Figure 3 provides another perspective on the evidence, aggregating results over the different 

versions of each categorical model.  Similar to the findings in the previous figure, by the end of the 

sample, the six-factor categorical model {Mkt Value Size Profitability Investment UMD} comes in 

first with posterior probability close to 75% and  the five-factor model that excludes size is next, but 
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with probability a little below 20%.  The third best categorical model consists of the same five 

categories as in FF5, while the fourth best replaces the investment factor with momentum.  However, 

it is essential that the more timely versions of value and profitability are employed in these models.  

Specifically, in untabulated calculations, the probability share for HMLm in the FF5 categorical 

model is 89.0%.  This is the sum of the probabilities over versions of the categorical FF5 model that 

include HMLm divided by the total probability for that categorical model.  Similarly, the shares for 

ROE are 99.9% in the categorical FF5 model and 99.0% in the categorical four-factor model. 

In terms of cumulative probabilities aggregated over all models, we see from the bottom panel 

of Figure 3 that the recently proposed category, profitability, ranks highest.   Interestingly, value is 

second with over 99% cumulative probability.  Consistent with the findings in Figure 2, the 

categorical share for HMLm, i.e., the proportion of the cumulative probability for value from models 

that include HMLm, as opposed to HML, is 99.5%.  Similarly, the categorical share of profitability is 

99.5% for ROE.  There is less dominance in the size and investment categories, with shares of 75.4% 

for SMB and 63.1% for IA.    

While the analysis above simultaneously considered all 162 possible models, we have also 

conducted direct tests that compare one model to another.  In particular, we test our six-factor model 

against the recently proposed models of HXZ and Fama and French.  Such a test is easily obtained by 

working with the union of the factors in the two models and computing the marginal likelihood for 

each model as in (3.3).  Assuming prior probability 0.5 for each model and zero probability for all 

other models, the posterior probability for model 1 in (3.1) is just ML1/(ML1 + ML2).  Comparing the 

top individual model found above, {Mkt IA ROE SMB HMLm UMD}, to the four-factor model of 

HXZ, the direct test assigns 96.6% probability to the six-factor model.  The six-factor model 

probability is greater than 99% when compared to FF5, even if the size factor is deleted from the 

model.   

The model comparison above was based on a prior assumption that Shmax = 1.5*Sh(Mkt) in 

(2.5) when working with six factors.  We next examine sensitivity to prior Sharpe multiples of 1.25, 

1.5, 2, and 3.  Tables 2 and 3 present the results for the individual and categorical models, 

respectively.  Both tables show probabilities for the top seven models under the 1.5 multiple 

specification.  The top models, {Mkt SMB ROE IA HMLm UMD} and {Mkt SMB ROE CMA 

HMLm UMD}, are also the two best under the more behavioral priors that allow for increases in the 

Sharpe ratio of 2 and 3 times the market ratio.  Their probabilities rise from 21.9% to 45.3% and from 
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12.6% to 25.7% as the multiple increases from 1.25.  These two models are among the top four under 

the lower-multiple specification, though the posterior probabilities are more diffuse in this case.   

The top model rankings for the categorical models are also stable across the different priors.  

The six-factor categorical model {Mkt SIZE PROF INV VAL MOM} is always the best, regardless 

of the prior, and its posterior probability increases substantially as the multiple increases.  The 

categorical model that excludes size comes in second for all multiples as well.  As noted above, the 

more timely HMLm accounts for 99.5% of the cumulative probability for the value category.  Table 4 

shows that timely value remains responsible for the lion’s share of the cumulative value probability 

across the different priors, especially at higher multiples.  Varying the prior also yields fairly similar 

results for timely profitability (ROE), as well as IA and SMB.  

Relative Tests: Are Value and Momentum Redundant? 

Barillas and Shanken (2015) show that when comparing two asset-pricing models, all that 

matters is the extent to which each model prices the factors in the other model.  Hou, Xue and Zhang 

(2015b) and Fama and French (2015a) regress HML on models that exclude value and cannot reject 

the hypothesis that HML’s alpha is zero, thus concluding that HML is redundant.  In addition, HXZ 

show that their model renders the momentum factor, UMD, redundant.  On the other hand, our results 

above show that the model {Mkt, SMB ROE IA UMD HMLm}, which receives highest posterior 

probability, contains both a value (HMLm) and a momentum factor (UMD).   

To shed further light on this finding, Table 5 shows the annualized intercept estimates for 

each factor in the top model when it is regressed on the other five factors.  We observe that the 

intercepts for HMLm and UMD are large and statistically significant, rejecting the hypothesis of 

redundancy.  HMLm has an alpha of 6.1% (t-stat 5.26) and UMD has an alpha of 6.6% (t-stat 3.96).  

When we regress the standard value factor, HML, on the non-value factors {Mkt, SMB ROE IA 

UMD} in our top model we find, as in the earlier studies, that it is redundant.  The intercept is 0.99% 

with a t-stat of 0.81.  The different results for the two value factors are largely driven by the fact that 

HMLm is strongly negatively correlated (-0.65) with UMD, whereas the correlation is only -0.15 for 

HML23.  The negative loading for HMLm when UMD is included lowers the model expected return 

and raises the HMLm alpha, so that this timely value factor is not redundant. 

                                                       
 

23 Asness and Frazzini (2013) argue that the use of less timely price information in HML “reduces the natural 
negative correlation of value and momentum.” 
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We now evaluate the hypothesis that HMLm is redundant from a Bayesian perspective.  

Figure 4 shows results for the Bayesian intercept test on the other factors.  As discussed earlier, the 

prior under the alternative follows a normal distribution with zero mean and standard deviation σα.  

The larger the value of σα, the higher the increase in the Sharpe ratio that one can expect to achieve 

by adding a position in HMLm to investment in the other factors.  The horizontal axis in each panel of 

the figure shows the prior multiple.  This is the Sharpe ratio for the alternative, expressed as a 

multiple of the Sharpe ratio for the factors in the null model that excludes HMLm.   

The left panel of the figure gives the posterior probability for the null model.  It quickly 

decreases to zero as the prior Sharpe multiple under the alternative increases, strongly rejecting the 

conclusion that HMLm is redundant.  Although the inference is not sensitive to the prior here, in other 

cases it may well be.  The right panel of Figure 4 provides information about the implied value of σα.  

This gives an idea of the likely magnitude of α’s envisioned under the alternative and should be 

helpful in identifying the range of prior multiples that one finds reasonable.24  For example, to get an 

increase in the Sharpe ratio of 25% from the already-high level of 0.44 for the null model, we would 

need a very large σα of about 7.5% per year.      

 

[Figure 4] 

  

The Bayesian analysis for UMD (not shown) looks much the same as Figure 4, strongly 

rejecting redundancy.  To highlight the role of HMLm in this finding, we exclude that factor and show 

that the evidence then favors the conclusion that UMD is redundant with respect to the remaining 

factors {Mkt SMB IA ROE}.  This essentially confirms the earlier finding of Hou, Xue and Zhang 

(2015b), but with SMB as the size factor, rather than ME.  In Figure 5, we see that the posterior 

probability for the null hypothesis of redundancy (UMD alpha is zero) is always above 50%, with 

values over 80% for Sharpe ratio multiples around 1.15.  The conventional p-value also exceeds 50% 

here, as indicated by the horizontal line in the figure.      

 

[Figure 5] 

 

5.2. Absolute Test Results 

                                                       
 

24 In general, the plot of σα is based on the average residual variance estimate for the left-hand-side assets. 
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In this section we apply Proposition 1 with a set of test assets - what we call an absolute test. 

We will see that failing to account for the excluded factors when conducting the absolute test can lead 

to the conclusion that an inferior model performs better than one that is actually superior.  However, 

once we incorporate the excluded factors, comparing the absolute results for the two models is line 

with our earlier results on model comparison.   

We saw above that over the sample period 1972-2013, the model with the highest posterior 

probability is the six-factor model {Mkt IA ROE SMB HMLm UMD}.  Now we evaluate this model, 

as well as the four-factor model of HXZ, from the absolute perspective.  Although a wide variety of 

test-asset portfolios has been examined, we present results for two representative sets that serve to 

illustrate some interesting findings.  The first set of portfolios is based on independent stock sorts by 

size and momentum, whereas the second set is constructed by sorting stocks on book-to-market and 

investment.  Strictly speaking, the two models considered in this section are not nested because the 

HXZ model uses ME, whereas our top model uses SMB.  However, the results are similar whether 

one uses ME or SMB.   

To test the HXZ model, we initially follow common practice and only employ the test-asset 

portfolios.  Then we add in the excluded factors UMD and HMLm as left-hand-side assets.  Using the 

25-size/momentum portfolios from January 1972 to December 2013, the GRS statistic for the HXZ 

model is 2.72 with p-value approximately zero, rejecting the model.  A descriptive statistic that has 

also been used to judge model performance is the average of the absolute values of the test-asset 

alphas, e.g., Fama and French (2015a).  The HXZ model produces an average absolute alpha of 

1.42% per annum.  When we add the excluded factors UMD and HMLm as left-hand-side assets, the 

GRS statistic is 10.5 with p-value virtually zero, but the average absolute alpha increases only 

slightly to 1.45%.   

The Bayesian F-test results for the HXZ model with the size/momentum portfolios are given 

in Figure 6.  Similar to the redundancy tests, the horizontal axis in the figure shows the multiple of 

the Sharpe ratio for the factors in the given null model.  This is the multiple under the alternative that 

the left-hand-side assets are not priced by the model.  The blue line in each panel shows the results 

without the excluded factors UMD and HMLm, whereas the red dashed line adds those factors as left-

hand-side returns.  We see in the left panel that the probability for the HXZ model is close to zero for 

Sharpe multiples in the range of 1.1 to 1.6 (blue), but when UMD and HMLm are added, there is even 

stronger evidence against the model, with the probability close to zero for a much wider range of 

priors (red).  
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[Figure 6] 

 
Next, we examine the absolute performance of the six-factor model with the same 25 

size/momentum portfolios. The GRS statistic is 3.5 and the corresponding p-value is nearly zero, 

strongly rejecting the model in a classical sense.  The Bayesian F-test also provides strong evidence 

(not shown) against the null hypothesis.  The probability of the null curve looks very similar to the 

red line in Figure 6, quickly declining to an extended zero-probability range.  Interestingly, in this 

case the average absolute alpha is 1.93% per annum, which is much higher than the 1.42%/1.45% 

under the HXZ model (with/without UMD and HMLm).  Yet, in our model comparison analysis, the 

six-factor model was strongly preferred to the HXZ model.  This is an example of the sort of conflict 

discussed in Barillas and Shanken (2015), who argue that model comparison must be based on 

excluded-factor restrictions, whereas test-asset metrics can be misleading.   Indeed, we have verified 

that the ratio of the absolute-test probability for the HXZ model (incorporating UMD and HMLm) to 

that for the six-factor model is very small,  except for Sharpe multiples close to one.   

Now we turn to the results for the 25 portfolios formed on sorts by book-to-market and 

investment.  For the HXZ model, the GRS statistic for the test-asset restrictions is 1.53 with a p-value 

of 0.05. The average absolute alpha is 1.44% per annum.  Adding the excluded factors UMD and 

HMLm increases the GRS statistic to 1.94. The p-value is now much smaller, 0.004, but the average 

absolute alphas are only slightly higher at 1.47%.  The Bayesian results are plotted in Figure 7.  The 

probability based solely on test assets (blue line) is substantial and never below 20%.  As indicated in 

the figure, the probability exceeds one-half for Sharpe ratios a bit greater than 1.2 (σα around 1.8%) 

and beyond.  With HMLm and UMD considered (red line), however, the probability for the null is 

close to zero for all but the tightest priors.  Thus, challenging the HXZ model to price excluded 

factors reduces the probability of the null substantially for a wide range of priors. 

[Figure 7] 
 

 Next, we use the same 25 book-to-market and investment portfolios to evaluate the six-factor 

model.  The GRS statistic is 2.89 with p-value nearly zero.  More interestingly, the average absolute 

alpha is 2.88% in this case, which is double the value under the HXZ model.  As with the 

size/momentum test portfolios, focusing on this test-asset metric would incorrectly give the 

impression that the six-factor model is inferior to the HXZ model.  Figure 8 plots the Bayesian F-test 

results.  The probability for the six-factor model here is greater than that in Figure 7 for the HXZ 
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model when the excluded factors are incorporated (red line), but lower otherwise (blue line).  Again, 

this shows that the absolute test results are in line with the model comparison analysis, both favoring 

the six-factor model, provided that the HXZ model is asked to price the value and momentum factors 

as well as the test assets.    

[Figure 8] 

We conclude this section with some additional observations about the Bayesian analysis.  

First, the probability for the models in Figures 7 and 8 rebounds from zero in each case and becomes 

substantial, approaching one (apparent for the blue line in Figure 7) as the Sharpe multiple and prior 

standard deviation for alpha get large.  This is an example of Bartlett’s paradox, mentioned earlier.  

Roughly speaking, although the alpha estimates may deviate substantially from the null value of zero, 

they may be even further from the values of alpha envisioned under the alternative when the Sharpe 

multiple is very large.  As a result, the posterior probability favors the restricted model in such a case.  

Thus, in evaluating pricing hypotheses of this sort, it is essential to form a “reasonable” a priori 

judgment about the magnitude of plausible alphas (reflected in the choice of the parameter k).   

The differing classical and Bayesian views about model validity that emerge in Figure 7 also 

deserve further comment.  The p-value of 5% in the evaluation based solely on test assets would 

typically be interpreted as evidence against the null.  However, the posterior probability (blue line) 

for the null is substantially higher than 5% for all priors, exceeding 50% for some more behavioral 

priors.  This finding is consistent with Lindley’s paradox: in sufficiently large samples, the posterior 

probability corresponding to a fixed p-value will be close to one, even if the p-value is small.25  This 

divergence reflects a fundamental difference between posterior probabilities and p-values.  Whereas 

the former reflects likelihoods under both the null and alternatives, the latter is a tail probability under 

the null that makes no reference to the distribution under the alternative.  Nonetheless, p-values are 

often treated in practice as if they are posterior probabilities.   The findings in Figure 7 serve as a 

                                                       
 

25 Intuitively, an alpha estimate with a t-statistic of two, say, will be close to zero when the sample is very large.  
The likelihood for α = 0 will be quite high in this case, whereas the likelihood for alternative values that have substantial 
prior probability but are further from zero, will be much lower.  As a result, the Bayes factor (ratio of marginal 
likelihoods) will strongly favor the null.   



 31

reminder that this can lead to less than sensible conclusions and highlights what some perceive as an 

advantage of the Bayesian approach.26 

Results for an Approximate Model 

We have seen that for priors with moderate to fairly large Sharpe multiples, the evidence in 

Figure 8 favors an unrestricted statistical model over the restricted pricing model {Mkt SMB IA ROE 

UMD HMLm}, the “winner” in our model comparison contest.  But perhaps the pricing model, 

nonetheless, provides a good approximation to the data.  After all, one might argue that models, by 

their nature, always leave out some features of reality and so cannot plausibly be expected to hold 

exactly.27  We address these issues in the Bayesian framework by modifying the null prior for a 

model to accommodate relatively small deviations from the exact specification.  The modified BF 

formula was given earlier in Proposition 1. 

 The black dotted line in Figure 9 (test assets 25 size/momentum portfolios) indicates 

extremely strong evidence against the exact null, 0 , as discussed earlier.  The blue line in the 

figure shows the results of an analysis in which the prior under the null now assumes that σα0 = 1% 

(annualized).  This allows for deviations from the exact version of {Mkt SMB ROE IA UMD 

HMLm} that have expected value of about 0.8% in magnitude.  Such deviations give rise to a higher 

Sharpe ratio under the approximate null hypothesis, about 10% larger than that for the exact null.  

Thus, whereas the starting point previously was at a Sharpe ratio multiple of 1.0, the blue line now 

starts at a ratio just over 1.1.  Not surprisingly, the posterior probabilities in Figure 9 for the less 

restrictive null model are higher than the probabilities obtained earlier for the exact model.  There is 

no longer a “zero probability range” for the approximate null, but the model probabilities are still less 

than 0.5 over what we would consider the more relevant range of prior Sharpe multiples. Thus, the 

unrestricted alternative is still favored.   

 To further explore the fit of the six-factor model, we increase σα0 to 1.5% (expected alpha 

about 1.2%), which corresponds to a Sharpe multiple just over 1.2.  The probability for this level of 

approximation, shown by the black dashed curve, is now greater than 0.5 over most of the prior 

range.  This sort of sensitivity analysis provides a computationally simple and conceptually appealing 

                                                       
 

26 Sample size is automatically incorporated in the BF.  While it is sometimes recognized that the significance 
level in a classical test should be adjusted to reflect sample size, this can be difficult to operationalize and is generally 
ignored. 

27 In the case of exact models, BFs still provide an indication of the “relative success” of the models at predicting 
the data, e.g., Kass and Raftery (1995), or the “comparative support” the data provide for the models, e.g., Berger and 
Pericchi (1996).   
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Bayesian complement to the descriptive statistics employed by Fama and French (2015a) to evaluate 

“goodness of fit” for a misspecified model.  An advantage of this extension of the Bayesian  

framework over the conventional F test is that it allows more subtle and informative inferences to be 

obtained in situations where the sample size is large and models are routinely rejected at conventional 

levels as above or, e.g., in Fama and French (2015b). 

6. Conclusion 

We have derived a Bayesian asset-pricing test that requires a prior judgment about the 

magnitude of plausible model deviations or "alphas" and is easily calculated from the GRS                

F-statistic.  Given a set of candidate traded factors, we develop a related test that permits an analysis 

of Bayesian model comparison, i.e., the computation of model probabilities for the collection of all 

possible pricing models that are based on subsets of the given factors.   

 Although our work is in the tradition of the literature on asset-pricing tests, Bayesian analysis 

has also been used to address other kinds of questions in finance.  For example, Pastor and 

Stambaugh (2000) are interested in comparing models too, but from a different perspective.  As they 

note, the objective of their study “is not to choose one pricing model over another.”  Rather, they 

examine the extent to which investors’ prior beliefs about alternative pricing models (one based on 

stock characteristics and another on a stock’s factor betas) impact the utility derived from the implied 

portfolio choices.  Such utility-based metrics are undoubtedly important, but complementary to our 

focus on inference about models in this paper.  

While we have analyzed the “classic” statistical specification with returns that are 

independent and identically normally distributed over time (conditional on the market), extensions to 

accommodate time-variation in parameters and conditional heteroskedasticity of returns would be 

desirable.  The factors examined in Assness and Frazzini (2013), Hou, Xue and Zhang (2015a,b) and 

Fama and French (2015a,b) have been studied in our preliminary empirical exploration, but other 

factors related to short and long reversals, the levels of beta and idiosyncratic volatility, and various 

measures of liquidity could be considered in future work as well.   
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Figure 1:  FF3 factors 1927-2013, Shmax = 1.27 x Sh(Mkt).   
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Figure 2: Sample 1972-2013, Shmax = 1.5 x Sh(Mkt).   



 38

 

Figure 3: Sample 1972-2013, Shmax = 1.5 x Sh(Mkt).   
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Figure 4: HMLm is not redundant in relation to the other factors {Mkt SMB ROE IA UMD} in the 

top model.  Bayesian intercept test for HMLm.  Sample 1972-2013.  Horizontal axis: Sharpe ratio for 

the alternative as a multiple of the ratio under the null hypothesis (latter is 0.44 or 3.9 times the 

Market Sharpe ratio). 
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Figure 5: UMD is redundant in relation to the model {Mkt SMB ROE IA}.  Bayesian intercept test 

for UMD.  Sample 1972-2013.  Horizontal axis: Sharpe ratio for the alternative as a multiple of the 

ratio under the null hypothesis (latter is 0.44 or 3.9 times the Market Sharpe ratio). 
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Figure 6: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 size-momentum 

portfolios (blue line) plus UMD, HMLm (red line).  Sample 1972-2013.  Horizontal axis: Sharpe ratio 

for the alternative as a multiple of the ratio under the null hypothesis (latter is 0.43 or 3.8 times the 

Market Sharpe ratio). 
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Figure 7: Sample 1972-2013, Model = {Mkt ME IA ROE}.  Test assets = 25 Book-to-

market/investment portfolios (blue line) plus UMD, HMLm (red line).  Horizontal line shows the 

conventional p-value.  Horizontal axis: Sharpe ratio for the alternative as a multiple of the ratio under 

the null hypothesis (latter is 0.43 or 3.8 times the Market Sharpe ratio). 
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Figure 8: Sample 1972-2013,  Model = {Mkt SMB IA ROE UMD HMLm}.  Test assets: 25 Book-to-

market/investment portfolios.  Horizontal axis: Sharpe ratio for the alternative as a multiple of the 

ratio under the null hypothesis (latter is 0.50 or 4.8 times the Market Sharpe ratio). 
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Figure 9: Sample 1972-2013, Model = {Mkt SMB IA ROE UMD HMLm}, Test assets = 25          

size-momentum portfolios.  Exact model (black dotted). σα0
 = 1% (blue line) or σα0

 =1.5% (black 

dashed) under the approximate null hypothesis.  Horizontal axis: Sharpe ratio for the alternative as a 

multiple of the ratio under the exact null hypothesis (latter is 0.51 or 4.5 times the Market Sharpe 

ratio). 
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Table 1  

Fama-French factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

 

Data Sample: Jan 1927 to Dec 2013   

Market Sharpe Ratio = 0.115 

3-factor Sharpe Ratio  = 0.142 or 1.23*Market Sharpe Ratio 

 

 

 

 

        *Multiple of Mkt Sharpe ratio under 3-factor alternative. 

 

 

 

 

Table 2 

  10 factors - Posterior Model Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   

Market Sharpe Ratio = 0.113 

6-factor (best model) Sharpe Ratio = 0.51 or 4.5*Market Sharpe Ratio  

 

     Model/Prior Multiple* 1.25 1.5 2 3 
Mkt SMB ROE IA HMLm UMD 21.9 35.1 42.6 45.3 
Mkt SMB ROE CMA HMLm UMD 12.6 20.1 24.2 25.7 
Mkt ME ROE IA HMLm UMD 9.1 11.4 10.6 9.2 
Mkt ROE IA HMLm UMD 14.6 10.9 6.6 5.0 
Mkt ROE CMA HMLm UMD 9.0 7.2 4.7 3.7 
Mkt ME ROE CMA HMLm UMD 0.2 6.6 6.1 5.3 
Mkt SMB ROE IA HMLm 3.8 1.6 0.6 2.8 

 

*Multiple of Mkt Sharpe ratio under 6-factor alternative. 

 

 

 

Model/Prior Multiple* 1.13 1.27 1.58 2.24 
Mkt HML 44.9 51.3 58.6 65.3 
Mkt HML SMB 42.2 39.1 32.1 23.1 
Mkt 6.6 5.2 5.7 8.1 
Mkt SMB 6.3 4.5 3.6 3.4 
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Table 3: Categorical Models - Posterior Probabilities for different Prior Sharpe Multiples  

Data Sample: Jan 1972 to Dec 2013   

Market Sharpe Ratio = 0.113 

6-factor (best model) Sharpe Ratio = 0.51 or 4.5*Market Sharpe Ratio 

 

 

 

 

    Table 4: Relative Probabilities for each Categorical Factor in the 10-factor Analysis 

 

Factor/Prior Multiple* 1.25 1.5 2 3 

ROE 96.0 99.5 99.9 100 
IA 63.6 63.1 63.1 63.2 

SMB 70.1 75.4 80.0 83.0 
 HMLm 93.9 99.5 99.9 100 

       *Multiple of Mkt Sharpe ratio under 6-factor alternative. 

Remaining PROF, INV, SIZE and VAL probability goes to RMW, CMA, ME and HML, 
respectively. 

 

 

 

 

 

     Model/Prior Multiple* 1.25 1.5 2 3 

Mkt SIZE PROF INV VAL MOM 50.8 73.4 83.6 85.6 
Mkt PROF INV VAL MOM 25.2 18.3 11.3 8.8 
Mkt SIZE PROF INV VAL 11.6 3.6 1.1 5.0 
Mkt SIZE PROF VAL MOM 2.0 2.9 3.5 4.6 
Mkt PROF VAL MOM 1.0 0.7 0.5 0.5 
Mkt SIZE PROF INV 3.4 0.5 0.1 0.0 
Mkt PROF INV VAL 3.3 0.3 0.2 0.0 
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Table 5 

Intercepts for each Factor in the Highest-Probability Model on the other Five-factors 

This table presents annualized alphas from regressions of each factor on the other factors in the 
model {Mkt SMB ROE IA UMD HMLm}.  Sample period Jan 1972 to Dec 2013 

 

Factor SMB ROE IA UMD HMLm 

Alpha 
(t-statistic) 

5.09 
(3.14) 

6.97 
(6.08) 

1.20 
(1.50) 

6.60 
(3.96) 

6.07 
(5.26) 

 


