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Abstract

We study strategic initiation of a first-price auction by potential buyers with chang-

ing valuations and the seller. This problem arises in auctions of companies and asset

sales, among other contexts. Each buyer can communicate his interest to the seller,

thereby triggering an auction. Alternatively, the seller can put the asset for sale

without waiting to be approached by a buyer. The bidder’s decision to communi-

cate his interest reveals some information about his valuation. In “common-value”

auctions, such as battles between financial bidders, it disincentivizes bidders from ap-

proaching the seller. In contrast, in “private-value” auctions, such as battles between

strategic bidders, the effect is the opposite. Unraveling occurs in the pure “common-

value” auctions: no bidder ever approaches the seller, and the auction, if occurs, is

seller-initiated. In contrast, equilibria in “private-value” auctions feature both seller-

and bidder-initiated auctions. A number of implications about the relation between

the initiating party, bids, and auction outcomes are derived and linked to empirical

evidence on auctions of companies.
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1 Introduction

Over the last several decades, auction theory has developed into a highly influential field

with many important results, such as the revenue equivalence theorem.1 The use of auc-

tion theory to model corporate finance transactions, such as mergers and acquisitions and

intercorporate asset sales, has also been extensive.2 To focus on the insights about the

auction stage, with very rare exceptions, the literature examines a situation when the asset

is already up for sale.

In some cases, exogeneity of an auction taking place is an innocuous assumption. For

example, the U.S. Treasury auctions off bonds at a known frequency. In many cases,

however, the decision to put the asset for sale is a strategic one. For example, the decision

of the board of directors of a firm to sell off a division is an endogenous one. In practice,

an auction can be either bidder-initiated, when a potential bidder approaches the seller

(e.g., the board of directors of the target company) expressing an interest, in which case

the seller then decides to auction the asset off, or seller-initiated, when the seller decides to

auction the asset off without being first approached by a potential buyer. To give a flavor

of this heterogeneity, consider the following two recent large deals in the M&A market. The

acquisition of Taleo, a provider of cloud-based talent management solutions, by Oracle on

February 9, 2012 for $1.9 billion is an example of a bidder-initiated auction. In January

2011, a CEO of a publicly traded technology company, referred in the deal background

as Party A, contacted Taleo expressing an interest in acquiring it. Following this contact,

Taleo hired a financial adviser that conducted an auction, engaging four more bidders.

Oracle was the winning bidder, ending up acquiring Taleo. By contrast, the acquisition

of Blue Coat Systems, a provider of Web security, by a private equity firm Thoma Bravo

on December 9, 2011 for $1.1 billion is an example of a seller-initiated takeover auction.

In early 2011, Elliot Associates, an activist hedge fund, amassed 9% ownership stake in

Blue Coat and forced its board to auction the company. Twelve bidders participated in the

auction, and Thoma Bravo was the winner. Overall, not only there exists a considerable

heterogeneity with respect to initiator of the contest, but also it appears to be far from

1The formal analysis of auctions goes back to Vickrey (1961). The revenue equivalence theorem was
derived by Myerson (1981) and Riley and Samuelson (1981). The overview of results on auction theory can
be found, for example, in Krishna (2010).

2Among others, see Fishman (1988), Bulow, Huang, and Klemperer (1999), Hansen (2001), and Povel
and Singh (2006). Dasgupta and Hansen (2007) provide a review of application of auction theory to
corporate finance.

2



random. For example, in the sample of Fidrmuc et al. (2012), acquisitions by strategic

acquirers are more likely to be bidder-initiated, while acquisitions by private equity firms

are more likely to be target-initiated.3

In this paper, we develop a theory of how potential buyers and the seller choose to

initiate auctions. In particular, we ask the following questions: Which characteristics of

auctions and the economic environment determine whether auctions are bidder- or seller-

initiated? What are the implied inefficiencies? How do bidding strategies and auction

outcomes differ depending on how the auction was initiated?

To study these and related questions, we consider a dynamic framework, in which a

seller has an asset to sell to one of a number of potential buyers. Each potential buyer has

a signal about his valuation of the asset. As time goes by, buyers’ valuations may of the

asset may change, as they experience shocks, such as changes in the business strategy or

in management. Unlike a typical auction model, we deviate from the assumption that the

auction takes place at an exogenous date. Here, putting the asset for sale is a strategic

decision of the seller. The auction can be initiated by a bidder, when she expresses an

interest by sending a message to the seller, which triggers the auction. Alternatively, the

auction can be initiated by the seller, when the seller chooses to auction the asset off

without first being approached by a bidder. The benefit for the seller to wait is that with

some likelihood, a bidder with a high valuation will appear and indicate his interest to the

seller, resulting in a better price. Conversely, the benefit to put the asset for sale without

waiting to be approached by a bidder is the lack of delay.

The key driving force behind our results is that approaching the seller reveals some

information about the bidder’s valuation of the asset. Similarly, the lack of any bidder

approaching the seller reveals information about valuations of all bidders. If the auction is

bidder-initiated, ex-ante identical bidders become endogenously asymmetric at the auction

stage: It is common knowledge that the signal of the initiating bidder is drawn from a more

optimistic distribution. Other bidders use this information in choosing their bidding strate-

gies. Similarly, the fact that no bidder has approached the seller yet reveals information to

a bidder contemplating whether to approach the seller or not that the signals of competitors

are low.

We show that the interplay between these information effects heavily depends on the the

3Initiation also appears to be related to characteristics of the seller and auction outcomes (Masulis and
Simsir, 2013).
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sources of bidders’ valuations. In “common-value” auctions, e.g., when a number of private

equity shops compete with each other to acquire a poorly-managed target, information

effects discourage every bidder from approaching the seller. In pure common-value auctions

unraveling occurs in equilibrium: No bidder ever approaches the seller, no matter how high

her signal is. All auctions, if they take place, are initiated by the seller. In contrast, the

information effect can work in the opposite direction in “private-value” auctions, e.g., when

several strategic bidders compete to purchase the asset that they will integrate into their

existing operations. In fact, we show that in the stationary equilibrium (i.e., when the

distribution of signals, conditional on no auction having taken place in the past, is the

same over time) the information effect in “private-value” auctions has the effect on bidder

initiation opposite to that in “common-value” auctions: given the same type, a bidder

prefers to initiate the auction herself rather than participate in an auction initiated by

another bidder.

The intuition behind these results is as follows. Consider a “common-value” setting: all

bidders have the same valuation of the asset but differ in their estimates of it. Approaching

the seller reveals information to other bidders that the signal of the initiating bidder is

sufficiently high: specifically, it is above a certain threshold ŝ. Then, other bidders re-

evaluate their estimates of the asset value upwards when they observe that the auction is

bidder-initiated. As a result, not only do these bidders update their bids simply due to the

fact that they compete against the stronger bidder, but also they update their valuations

which results in an even more aggressive bidding. In the case of pure common values, this

means that the threshold type ŝ of the initiating bidder only wins the auction, when the

types of all rival bidders are the lowest, and in this case she pays the whole value of the

target, obtaining zero surplus. Because the argument holds for any ŝ, the only equilibria

possible are the ones in which bidder-initiated auctions never happen.

In contrast, the opposite effect takes place in a “private-value” auction. Consider a

bidder with a high valuation who contemplates approaching the seller. By observing that

no other bidder has approached the seller yet, she learns that valuations of other bidders

are likely to be not too high. Approaching the seller immediately allows a bidder with a

high valuation to take advantage of a good timing when her rivals are likely to be weak.

While other bidders increase their bids in response to competition from the stronger bidder,

they do not update their private valuations, which results in money left on the table for
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the initiating bidder. In contrast, waiting until another bidder approaches the auction,

ensures that a bidder under consideration will compete against a strong rival. Even though

participating in an auction initiated by another bidder allows a bidder with a high valuation

to hide her type, the former effect always dominates: Competing with a weaker rival, even

though she adjusts a bid upwards, is always better than competing with a stronger rival

who adjust her bid downwards.

In the “private-value” framework, multiple equilibria can and often do arise. This

happens because initiation by bidders and the seller are substitutes. Specifically, if bidders

expect the seller to never put herself for sale, they will have strong incentives to approach

the seller, because, as argued above, the information effect means that bidders are reluctant

to wait until other bidders initiate the auction, as it results in the competition against a

strong rival. In contrast, if bidders expect the seller to put herself for sale soon in the future,

they will have weak incentives to approach the seller. Intuitively, waiting for a seller to put

the asset for sale allows a bidder with a high valuation to hide it from competitors without

the cost of competing against a strong rival, which would occur if the bidder waited for

another bidder to approach the seller.

Taken together, our theoretical results provide a benchmark with which one can com-

pare empirical findings on initiation of auctions. For example, our results are consistent

with empirical evidence on target- and bidder-initiated strategic and private-equity deals,

presented in Fidrmuc et. al (2012): approximately 60% (35%) of strategic (private-equity)

deals are initiated by the bidders. Our explanation of this large discrepancy is that finan-

cial but not strategic bidders have a large common value component in their valuations

for targets. Our analysis also has a number of implications about how bids and auction

outcomes differ depending on whether it is bidder- or seller-initiated.

Our paper belongs to the vast literature on auction theory. Virtually all the literature

already considers a stage when the auction takes place. Two exceptions are recent papers

by Cong (2013) and Gorbenko and Malenko (2013), which also feature strategic initiation

of an auction but do not study joint initiation by bidders and the seller and focus on bids

in cash versus in securities. Both papers assume persistent types and the private-value

framework, so the considerations examined here do not occur.

The paper is related to the literature that studies takeover contests as auctions. They

have been modeled using both the private-value framework (e.g., Fishman (1988) and
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Burkart (1995)) as well as the common-value framework (e.g., Bulow, Huang, and Klem-

perer (1999), and Povel and Singh (2006)).4 In our interpretation of the private-value

framework as a competition between strategic bidders and the common-value framework as

a competition between financial bidders, we follow Bulow, Huang, and Klemperer (1999).

None of these papers studies endogenous initiation of takeover contests.

Finally, the paper is related to models of auctions with asymmetric bidders. Most

literature on auction theory assumes that bidders are symmetric in the sense that their

signals are drawn from the same distribution. Some recent literature (e.g., Maskin and

Riley, 2000, 2003; Campbell and Levin, 2000; Lebrun, 2006; Kim; 2008) examines issues

that arise when bidders are asymmetric. The novelty of our paper is that asymmetries at

the auction stage are not assumed: They arise endogenously and are driven by incentives

to approach the seller which differ with the bidder’s information. Even though bidders

are ex-ante identical, meaning that they draw their signals from the same distributions,

ex-interim at the auction stage they are not. The decision of one bidder to approach the

seller and the observation that no other bidder has approached the seller yet endogenously

create asymmetry among bidders when the auction takes place.

The remainder of the paper is organized as follows. Section 2 describes the setup of the

model. Section 3 studies the “common-values” framework. Section 4 studies the “private-

values” framework. Section 5 considers a special case of the private-values model, in which

there are two bidders and valuations are distributed uniformly. This special case permits

a closed-form solution. Section 6 discusses some implications of the analysis. Section 7

concludes.

2 The Model Setup

The economy consists of one risk-neutral seller and N > 1 potential risk-neutral buyers,

indexed by i = 1, ..., N . The seller has the asset for sale. In the context of application to

mergers and intercorporate asset sales, the asset can be the whole company or a business

unit. The seller’s valuation of the asset is normalized to zero. Time is continuous and

indexed by t ≥ 0.

At the initial date t = 0, each potential buyer i randomly draws a private signal.

4Bulow and Klemperer (1996, 2009) provide motivations why running a simple auction is often a good
way for the seller to sell the asset.
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Bidders’ signals are independent draws from the uniform distribution over [0, ŝ0], where

ŝ0 ∈ [0, 1].5 Conditional on all signals, the value of the asset to bidder i is v (si,S−i) , where

S−i ≡ {s1, ..., si−1, si+1, ..., sN} is the set of signals of all other bidders.

Assumption 1. Function v (si,S−i) is continuous in all variables, symmetric in the last

N − 1 variables, strictly increasing in si, and satisfies v (si,S−i) ≥ 0 ∀ (si,S−i) ∈ [0, 1]N .

Assumption 1 is a standard assumption in auction theory. Continuity means that there

are no “gaps” in possible valuations of the asset. Symmetry in the last N−1 variables means

that signals of all rival bidders have the same information content for the valuation of a

bidder. Strict monotonicity in the first variable means that a higher private signal is always

good news about the bidder’s valuation. Finally, v (si,S−i) ≥ 0 for any combination of

signals means that a sale is always the efficient outcome, which is convenient for exposition

but not necessary for most results. This valuation structure follows the general symmetric

model of Milgrom and Weber (1982). It covers two valuation structures commonly used in

the literature:

• The private-values framework. This is the case if and only if v (si,S−i) = v (si).

The distinguishing feature of the private values framework is that a bidder’s signal

provides information only about his own valuation, but not about the valuation of his

competitors.

• The common-values framework. This is the case if and only if v (si, ,S−i) = v (S),

which is symmetric in all N variables. Conditional on all signals, all bidders have the

same valuation of the asset. However, bidders differ in their assessment of the value

of the asset, because their private signals are different.

We focus on these two valuation structures. There are two natural interpretations of

common values versus private values in the context of auctions of companies and business

units. The first interpretation deals with different types of bidders. Following Bulow,

Huang, and Klemperer (1999), we can interpret the common-value (private-value) auction as

a battle between two financial (strategic) bidders. Intuitively, financial bidders tend to use

5Because we assume a general functional form that maps signals into valuations, uniform distribution
is, to a large extent, a normalization.
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the same strategies after they acquire the target (i.e., have “common” values), but may have

different estimates of potential gains (i.e., have different signals about the common value).

In contrast, because synergies that one strategic bidder expects to achieve from acquiring

the target are often bidder-specific, they provide little information about valuation of the

target to the other bidder. This interpretation is somewhat consistent with the finding of

Gorbenko and Malenko (2012) that conditional on observed characteristics of the target,

valuations of strategic bidders are more dispersed than valuations of financial bidders. The

second interpretation deals with different types of targets rather than bidders. Broadly,

value can be created in acquisitions either because the incumbent management of the target

is inefficient or because the target and the acquirer have synergies that cannot be realized

by the acquirer as a stand-alone company. Acquisitions of the first type are common-value

deals, while acquisitions of the second type are private-value deals.

In practice, the environment changes over time, as either the business nature or man-

agement of a bidder or a target changes, or external economic shocks arrive. We capture

this feature in the following way. As time goes by, each bidder can experience a shock.

A shock arrives according to the Poisson process with intensity λ > 0, and shocks are in-

dependent across bidders. If bidder i experiences a shock, he draws a new signal si from

uniform distribution over [0, 1]. His valuation of the asset changes to v (si,S−i), and his

previous signal becomes irrelevant.6 The general idea behind this assumption is that there

is an option value in not acquiring the asset today if the valuation is positive but low.

The seller has the right to auction the asset among the bidders at any time. By putting

the asset for sale at time t, the seller commits to sell the asset through a sealed-bid first-price

auction with no reserve price. Specifically, each bidder simultaneously submits a bid to the

seller in a concealed fashion. The N bids are compared, and the bidder that submitted

the highest bid acquires the asset and pays the bid she submitted. Once the auction takes

place, the game is over. The winning bidder obtains the payoff that equals to her valuation

less the price she pays. All losing bidders obtain zero payoffs. The seller obtains the payoff

that equals to the winning bid.

Prior to the auction, each bidder may communicate privately with the seller by sending

a message signaling his interest in acquiring the asset. Communication is costless and

follows Crawford and Sobel (1982) with the binary message space (0 or 1). Without loss

6Alternatively, we could assume that an existing bidder exits the game and obtains some exit payoff X,
while a new bidder comes in.
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of generality, message m = 1 is interpreted as “I am interested,” and message m = 0 is

interpreted as the lack of communication. As we will see, in equilibrium, upon receiving

message m = 1, the seller will auction the asset off immediately. We refer to such an event

as a “bidder-initiated” auction, capturing the fact that the auction is triggered by a bidder

communicating his interest to the seller. The seller may also auction the asset off without

receiving messagem = 1. We refer to such an event as a “seller-initiated” auction, capturing

the fact that the auction was not triggered by any bidder communicating his interest to

the seller. After the decision to undertake an auction but prior to bidders’ submitting

bids, the seller may disclose whether the auction is bidder- or seller-initiated. The seller

does not have to disclose it but cannot lie.7 By the standard reasoning (Grossman, 1981;

Milgrom, 1981), since it is common knowledge that the seller knows if the auction is bidder-

or seller-initiated, the seller will always disclose it.

2.1 The equilibrium concept

The equilibrium concept is Markov Perfect Bayesian Equilibrium (MPBE). At the auction,

the strategy of each bidder is a mapping from his own signal and the belief about the

signals of other bidders into a non-negative bid. Prior to the auction, the strategy of each

bidder is a mapping from his own signal and the belief about the signals of other bidders

into m ∈ {0, 1}. The strategy of the seller is a mapping from his belief about the signals

of all bidders into the decision whether to auction the asset or wait. Because bidders are

ex-ante symmetric, we look for equilibria in which the bidders follow symmetric strategies

prior to the auction. Furthermore, we look for equilibria in which at any time t prior to

the auction a bidder follows the cut-off communication strategy, such that a bidder sends

message m = 1 if and only if his signal is above some cut-off ŝt.
8

For much of the paper, we consider the stationary case, defined as the situation in

7Lying can be punished either implicitly because of reputational converns of the investment bank advising
the seller or explicitly: If the seller is a publicly-traded US corporation, the seller is obligated to disclose
the sale process as part of the “background of the merger” (e.g., Boone and Mulherin, 2007); if some
information there is not truthful, the seller might get sued.

8Because arbitrarily low types always obtain an arbitrarily low surplus from the auction, it is straight-
forward that there is no equilibrium in which low types send the message that triggers the auction, while
high types do not. What is less clear, however, is whether there are equilibria in which communication
strategies are not described by a cut-off (e.g., if there can be multiple cut-offs). Because the analysis of
first-price auctions when distributions of valuations have an arbitrary number of gaps is, to our knowledge,
an open problem, we cannot characterize the whole set of symmetric MPBE.
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which the cut-off ŝt stays constant over time at some level ŝ. This requires that the initial

condition is ŝ0 = ŝ. Because in practice there is often no clear starting date, at least, in the

applications we look at, focusing on the stationary solution is reasonable. Towards the end

of the paper, we provide an analysis of the non-stationary dynamics, starting at ŝ0 = 1.

3 The Case of Common Values

Consider the case of pure common values, v (si,S−i) = v (S), where v (S) is symmetric in

all N variables.

3.1 Equilibria in Bidder- and Seller-Initiated Auctions

First, we solve for the equilibrium at the auction stage.

3.1.1 A bidder-initiated auction

Consider a bidder-initiated auction with an exogenous cut-off type ŝ. Without loss of

generality, denote the initiating bidder by bidder 1. Then, from the point of view of other

bidders and the seller, the type of the initiating bidder is distributed uniformly over [ŝ, 1].

By contrast, the type of each non-initiating bidder is distributed uniformly over [0, ŝ].

Thus, even though all bidders are ex-ante symmetric, initiation endogenously creates an

asymmetry between the initiating bidder and all other bidders.

Conjecture that the equilibrium in pure strategies exists. Let aI (s, ŝ) denote the equi-

librium bid of the initiating bidder with signal s1 ≥ ŝ, given that all other bidders believe

that types ŝ and above initiate the contest. Similarly, let aN (s, ŝ) denote the equilibrium

bid of the non-initiating bidder with signal s. Let ā (ŝ) ≡ aI (1, ŝ) = aN (ŝ, ŝ) be the com-

mon highest bid submitted by both bidders.9 Consider the initiating bidder with signal s

and bid b. The expected payoffs of the initiating bidder and each non-initiating bidder with

signal s and bid is b are

PI (b, s, ŝ) =

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, x2, ..., xN−1)) dx2...dxN .

9The proof that αI (1, ŝ) = aN (ŝ, ŝ) is straightforward. Suppose aI (1, ŝ) > aN (ŝ, ŝ). Then, types
of bidder 1 close enough to 1 can reduce their bids and still win the auction with probability 1. Thus,
aI (1, ŝ) > aN (ŝ, ŝ) cannot occur in equilibrium. Similarly, aI (1, ŝ) < aN (ŝ, ŝ) cannot occur in equilibrium.
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PI (b, s, ŝ) =

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, x2, ..., xN)− b) dx2...dxN
ŝN−1

, (1)

PN (b, s, s) =

∫ φI(b,ŝ)

ŝ

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, x2, x3, ..., xN)− b) dx2...dxN
(1− ŝ) ŝN−2

. (2)

where φj ≡ a−1
j , j ∈ {I,N} is the inverse of the bidding function. Intuitively, the expected

payoff of a bidder from the auction equals her valuation, which depends on the realization

of the competitors’ signals, less her bid, integrated over all realizations of the competitor’s

signal, such that the bidder is the winner.

Taking the first-order conditions of (1) and (2), we get

0 = (N − 1)
∂φN (b, ŝ)

∂b

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, φN (b, ŝ) , x3, ..., xN)− b) dx3...dxN−φN (b, ŝ)N−1 ,

(3)

0 =
∂φI (b, ŝ)

∂b

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, φI (b, ŝ) , x3, ..., xN)− b) dx3...dxN

+ (N − 2)
∂φN (b, ŝ)

∂b

∫ φI(b,ŝ)

ŝ

∫ φN (b,ŝ)

0

...

∫ φN (b,ŝ)

0

(v (s, φN (b, ŝ) , x3, ..., xN)− b) dx3...dxN(4)

− (φI (b, ŝ)− ŝ)φN (b, ŝ)N−2 .

In equilibrium, b = aI (s, ŝ) must satisfy (3), implying s = φI (b, ŝ), and b = βN (s, ŝ) must

satisfy (4), implying s = φN (b, ŝ). Plugging in and rearranging the terms, we get that for

all b < b̄ the following differential equations must hold:

(N − 1)
∂φI (b, ŝ)

∂b
=

φN (b, ŝ)

E [v (φI (b, ŝ) , φN (b, ŝ) , x3, ..., xN) |x3, ..., xN ≤ φN (b, ŝ)]− b ; (5)

1 =
∂φI (b, ŝ)

∂b

E [v (φN (b, ŝ) , φI (b, ŝ) , x3, ..., xN) |x3, ..., xN ≤ φN (b, ŝ)]− b
φI (b, ŝ)− ŝ

+ (N − 2)
∂φN (b, ŝ)

∂b

E [v (φN (b, ŝ) , φN (b, ŝ) , x3, ..., xN) |x3 ∈ [ŝ, φI (b, ŝ)] , x4, ..., xN ≤ φN (b, ŝ)]− b
φN (b, ŝ)

(6)

The intuition behind (5)–(6) is as follows. Bidder i faces a trade-off. On one hand, by in-

creasing her bid from b a little bit, she increases the likelihood of winning. In this marginal

event, she will outbid one of the other bidders only by a little bit. If bidder i is the ini-
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tiating bidder, it means that in the marginal event one of the other N − 1 bidders has

a signal of exactly φN (b, ŝ). Thus, in the marginal event, bidder i gets the surplus of

E [v (φI (b, ŝ) , φN (b, ŝ) , x3, ..., xN) |x3, ..., xN ≤ φN (b, ŝ)] − b. If bidder i is a non-initiating

bidder, then there are two types of marginal events: either she outbids the initiating bid-

der with signal φI (b, ŝ) or she outbids one of the other non-initiating bidders with signal

φN (b, ŝ). On the other hand, by increasing her bid from b a little bit, bidder i will pay

more whenever he wins the auction. In equilibrium, the mapping between bids and signals

is such that the marginal costs and benefits are equal, yielding (5)–(6).

The system of equations (5)–(6) is solved subject to the boundary conditions, which are

to be determined. Let [a (ŝ) , ā (ŝ)] denote the interval of possible bids. It must be the same

for both bidders, as otherwise one of the bidders finds it optimal to deviate. The upper

boundary implies 1 = φI (ā (ŝ) , ŝ) and ŝ = φN (ā (ŝ) , ŝ). Consider the lower boundary

a (ŝ). First, it cannot be below v (ŝ,0), because either the initiating bidder of type ŝ or a

non-initiating bidder of type 0 would find it optimal to deviate and submit a marginally

higher bid. By doing this, she can increase the probability of winning from zero to a positive

number, and thus get a positive expected surplus instead of zero. Therefore, b (ŝ) ≥ v (ŝ,0).

Second, b (ŝ) cannot be above v (ŝ,0), because such b (ŝ) would imply that low enough types

get a negative surplus in equilibrium. Thus, we get the following lemma:

Lemma 1 (equilibrium in the bidder-initiated CV auction). The equilibrium

bidding strategies of the initiating and non-initiating bidders, αI (s, ŝ) and aN (s, ŝ), are

increasing functions, such that their inverses satisfy (5)–(6), with boundary conditions

1 = φI (ā (ŝ) , ŝ) , (7)

ŝ = φN (ā (ŝ) , ŝ) (8)

a (ŝ) = v (ŝ,0) . (9)

In particular, for the special case of N = 2, differential equations 5)–(6) take a simple
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form:

∂φN (b, ŝ)

∂b
=

φN (b, ŝ)

v (φI (b, ŝ) , φN (b, ŝ))− b, (10)

∂φI (b, ŝ)

∂b
=

φI (b, ŝ)− ŝ
v (φI (b, ŝ) , φN (b, ŝ))− b. (11)

Furthermore, if the valuation is additive, v (s1, s2) = 1
2

(s1 + s2), then the equilibrium bid-

ding strategies are linear:

aI (s, ŝ) =
s+ ŝ(1− 2ŝ)

4(1− ŝ) ,

aN (s, ŝ) =
s+ 2ŝ2

4ŝ
.

The common range of bids is
[
ŝ
2
, 1+2ŝ

4

]
. The equilibrium bids are plotted on the left-panel

of Figure 1 for the case ŝ = 0.5.

0 0.2 0.4 0.6 0.8 1
0.25

0.3

0.35

0.4

0.45

0.5
Plot of bid as a function of signal

Signal

B
id

 

 

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Plot of expected bidder surplus as a function of signal

Signal

E
x
p

e
c
te

d
 b

id
d

e
r 

s
u

rp
lu

s

 

 

Bidder 1

Bidder 2

Bidder 1

Bidder 2

Figure 1: Equilibrium bids and expected payoffs of bidders in a bidder-initiated
common-value auction. The left panel plots the equilibrium bids as functions of signals
for the initiating bidder (the blue normal line) and the other bidder (the red dashed line).
The right panel plots the corresponding expected surpluses of each bidder.

The equilibrium in the auction implies the payoff of type ŝ of the initiating bidder is

zero:
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Lemma 2. The equilibrium payoff of the initiating bidder of type ŝ is zero: PI (a (ŝ) , ŝ, ŝ) =

0.

Proof. Follows immediately from a (ŝ) = v (ŝ,0).

The intuition behind the lemma is as follows. All non-initiating bidders know that

the initiating bidder approaches the seller if and only if her signal is at least ŝ. Therefore,

when a non-initiating bidder sees that the auction was bidder-initiated, she re-evaluates

the target to at least v (s, ŝ,0), where s is her own signal. Similarly, the initiating bidder

estimates that the target is worth at least v (s,0), where s is her signal. Because under

no circumstance the target is valued less than v (ŝ,0), no bidder in equilibrium bids less

than this. However, type ŝ of bidder 1 wins the auction only when the signals of all other

bidders are zeros, i.e., when all other bidders submit a (ŝ). In this situation, the value of

the asset is exactly v (ŝ,0), leaving bidder 2 without surplus. Note that this result holds

for any cut-off type ŝ.

An important result from the bidding stage is that the initiating bidder obtains a zero

expected payoff. As we show in the next section, this result is unique to the common-value

setting. The argument behind this result generalizes the logic of Engelbrecht-Wiggans, Mil-

grom, and Weber (1983) who show that a bidder that has access to only public information

always gets zero surplus in equilibrium. Here, the initiating bidder does have proprietary

information, because her decision to approach the target only reveals that her signal is

above a certain level. Therefore, she does get a positive expected surplus, unlike a bidder

with public information in Engelbrecht-Wiggans, Milgrom, and Weber (1983). This can

be seen on the right panel of Figure 1. Despite this, the marginal type of the initiating

bidder, ŝ, gets zero surplus, because her decision to approach the seller makes it common

knowledge that her type is at least ŝ. Put differently, in the common-values model, the

bidder gets expected surplus because of her information rents: To reveal her higher signal

through a higher bid, the bidder must be compensated with a higher surplus, which takes

the form of a higher probability of winning. However, type ŝ of bidder 1 has no information

rent: It is common knowledge that s1 is at least ŝ, so type ŝ has no lower types to separate

from; hence, there is no need to pay her.
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3.1.2 A seller-initiated auction

Suppose that the seller initiates the auction. Conditional on no bidder approaching the

seller, all parties believe that each bidder’s signal is a random draw from [0, ŝ] for some

cut-off type ŝ. Because the auction is seller-initiated, all bidders are symmetric, so we will

look for an equilibrium in symmetric bidding strategies. Let α (s, ŝ) denote the bid of a

bidder with signal s. The expected payoff of a bidder with signal s who bids b is

P (b, s, ŝ) =

∫ φ(b,ŝ)

0

...

∫ φ(b,ŝ)

0

(v (s, x2, ..., xN)− b) dx2...dxN
ŝN−1

, (12)

where φ (b, ŝ) is the inverse in s of α (s, ŝ). Taking the first-order condition and using the

fact that the maximum is reached at b = α (s, ŝ) (or, equivalently, s = φ (b, ŝ)), we obtain

differential equation

(N − 1)
∂φ (b, ŝ)

∂b
=

φ (b, ŝ)

E [v (φ (b, ŝ) , φ (b, ŝ) , x3, ..., xN) |x3, ..., xN ≤ φ (b, ŝ)]− b. (13)

This equation is solved subject to the boundary condition β (0, ŝ) = v (0), or, equivalently,

0 = φ (v (0) , ŝ). Intuitively, the lowest type wins the auction only if all her competitors also

have the lowest signals. The value of the asset conditional on this event is v (0). Because

under no circumstance the target is valued less than v (0), the bidders compete away the

value and bid v (0). Note that neither (13) nor the initial value condition depend on ŝ other

than through φ (·). Therefore, the solution is independent of ŝ. We denote it by φ (b) and

β (s). To summarize:

Lemma 3 (equilibrium in the seller-initiated CV auction). If the seller initiates

the auction, all N bidders are symmetric. The symmetric equilibrium bidding strategies

are independent of ŝ and solve (13) subject to the initial value condition 0 = φ (v (0) , ŝ)

(β (0, ŝ) = v (0)).

When N = 2, the equilibrium simplifies to the well-known result:

β (s) = E [v (x, x) |x ≤ s] . (14)

Importantly, all bidders except for the lowest type 0 obtain positive expected payoff
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from the auction. In particular, the cut-off type ŝ obtains a positive payoff.

3.2 The Initiation Game

Because the marginal type of the initiating bidder always obtains zero surplus in equilibrium,

it is straightforward to show the unraveling result: bidder initiation never happens. To see

this, suppose by contradiction that ŝt < 1 at some time t. Then, types s → ŝt obtain an

infinitesimal payoff by approaching the seller. Consider a deviation in which type s, close

enough to ŝt, never approaches the seller. The payoff from this deviation is strictly positive

and bounded away from zero, because all P (s, ŝ), PI (s, ŝ), and PN (s, ŝ) are positive and

bounded away from zero. Thus, types s → ŝt strictly benefit from waiting, so there exists

no equilibrium in which ŝt < 1 at some time t.

By contrast, there always exists an equilibrium in which the seller immediately initiates

the auction. It is also the unique equilibrium, because waiting is never optimal for the seller

when no bidder ever approaches the seller:

Proposition 1. There exists a unique equilibrium. In this equilibrium, no bidder ever

approaches the seller, and the seller initiates the auction immediately at t = 0.

It is straightforward to extend the model by assuming that running an auction costs

I > 0 to the seller. The following corollary illustrates the unique equilibrium in this case:

Corollary. Let

Îcv ≡ E
[
β

(
max

i∈{1,...,N}
si

)
|si ∈ [0, 1] ∀i

]
. (15)

If I < Îcv, the seller initiates the auction at the initial date. If I > Îcv, the seller does not

initiate the auction, no bidder approaches the seller, and the sale never happens.

4 The Case of Private Values

Next, we consider the case of private values: bidder i has the valuation of v (si). First,

we solve for the equilibria in bidder- and seller-initiated auctions. Then, we consider the

initiation game, taking the equilibria in the auctions as given.
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In the analysis of the auction, we impose the following restriction on equilibrium bids:

Assumption 2. No bidder bids more than his valuation in equilibrium.

The rationale behind this assumption is that bidding above one’s valuation is a domi-

nated strategy. Still, as Kaplan and Zamir (2011) show, if no such restriction is imposed,

multiple equilibria in the first-price auction with asymmetric bidders arise, in which some

bidders submit “non-serious” bids (i.e., bids that win with probability zero) above their

valuations. Restricting equilibrium bids to be below valuations pins down the unique equi-

librium in the auction (Lebrun, 2006).

4.1 Equilibria in Bidder- and Seller-Initiated Auctions

4.1.1 A bidder-initiated auction

Suppose that a bidder approaches the seller if and only if his new signal exceeds ŝ. Without

loss of generality, denote the initiating bidder by bidder 1. The other bidders are denoted

by index i = 2, ..., N . Thus, at the auction stage bidder 1 believes that the types of other

bidders are distributed uniformly over [0, ŝ]. Each of the other N − 1 bidders believes that

the types of N − 2 of her competitors are distributed uniformly over [0, ŝ], and the type of

the remaining bidder is distributed uniformly over [ŝ, 1]. Denote the equilibrium bid of the

initiating bidder by βI (si, ŝ), and the equilibrium bids of the other bidders by βN (si, ŝ).

We denote the corresponding inverses by γI (b, ŝ) and γN (b, ŝ)

By the standard argument (e.g., Chapter 4.2 in Krishna, 2010), the minimum and max-

imum “serious” bids (i.e., bids that win with a positive probability) of both the initiating

and the non-initiating bidders must be the same. Denote them by b (ŝ) and b (ŝ). The

expected payoff of the initiating bidder with signal s ∈ [ŝ, 1] and bid b is

ΠI (b, s, ŝ) = Pr (βN (s2, ŝ) ≤ b)N−1 (v (s)− b)

=

(
γN (b, ŝ)

ŝ

)N−1

(v (s)− b) . (16)

Intuitively, if this bidder makes a bid b, it exceeds the bid of each of its competitors with

probability γN (b, ŝ) /ŝ. Thus, the bid of b leads to winning the auction with probability
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(γN (b, ŝ) /ŝ)N−1, conditional on which the bidder gets the payoff of his valuation of the

asset less his payment. The first-order condition is

(N − 1)
∂γN (b, ŝ)

∂b
(v (s)− b) = γN (b, ŝ) . (17)

In equilibrium, the optimal bid is given by βI (s, ŝ), implying that s = γI (b, ŝ). Thus,

(N − 1)
∂γN (b, ŝ)

∂b
(v (γI (b, ŝ))− b) = γN (b, ŝ) . (18)

This expression equates the benefits of the initiating bidder from increasing his bid by a

small margin (the higher probability of winning - the left-hand side) with the cost of paying

more conditional on winning (the right-hand side).

Similarly, the expected payoff of the non-initiating bidder with signal s ∈ [0, ŝ] and bid

b is

ΠN (b, s, ŝ) = Pr (βI (s1, ŝ) ≤ b) Pr (βN (s2, ŝ) ≤ b)N−2 (v (s)− b)

=
γI (b, ŝ)− ŝ

1− ŝ

(
γN (b, ŝ)

ŝ

)N−2

(v (s)− b) . (19)

Intuitively, if a non-initiating bidder bids b, his bid exceeds the bid of the initiating bidder

with probability (γI (b, ŝ)− ŝ) / (1− ŝ), and the bid of each single non-initiating bidder with

probability γN (b, ŝ) /ŝ. Thus, the probability of winning is γI(b,ŝ)−ŝ
1−ŝ

(
γN (b,ŝ)

ŝ

)N−2

, conditional

on which the bidder gets the payoff of his valuation v (s) less his payment b. The first-order

condition is

∂γI (b, ŝ) /∂b

1− ŝ

(
γN (b, ŝ)

ŝ

)N−2

(v (s)− b) +
γI (b, ŝ)− ŝ

1− ŝ (N − 2)

(
γN (b, ŝ)

ŝ

)N−3
∂γN (b, ŝ) /∂b

ŝ
(v (s)− b)

=
γI (b, ŝ)− ŝ

1− ŝ

(
γN (b, ŝ)

ŝ

)N−2

. (20)

Equivalently,(
∂γI (b, ŝ)

∂b
γN (b, ŝ) + (N − 2)

∂γN (b, ŝ)

∂b
(γI (b, ŝ)− ŝ)

)
(v (s)− b) = (γI (b, ŝ)− ŝ) γN (b, ŝ) .

(21)
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In equilibrium, the optimal bid is b = βN (s, ŝ). Equivalently, s = γN (b, ŝ). Thus,(
∂γI (b, ŝ)

∂b
γN (b, ŝ) + (N − 2)

∂γN (b, ŝ)

∂b
(γI (b, ŝ)− ŝ)

)
(v (γN (b, ŝ))− b) = (γI (b, ŝ)− ŝ) γN (b, ŝ) .

(22)

This expression equates the marginal benefits of increasing the bid by a non-initiating

bidder in the higher probability of winning (the left-hand side) with the marginal cost of

the higher payment conditional on winning (the right-hand side).

The system of two equations, (18) and (22), is solved subject to the following boundary

conditions:

γI (b (ŝ) , ŝ) = ŝ, (23)

γN (b (ŝ) , ŝ) = v−1 (b (ŝ)) , (24)

γI
(
b (ŝ) , ŝ

)
= 1, (25)

γN
(
b (ŝ) , ŝ

)
= ŝ. (26)

Condition (23) means that the lowest type of the initiating bidder, ŝ, submits the lowest

serious bid. Condition (24) means that type of a non-initiating bidder that submits the

lowest serious bid bids her valuation. Intuitively, otherwise either this bidder would bid

above his valuation, which violates Assumption 2, or would profitably deviate to increasing

her bid a little, which would result in a positive expected payoff, exceeding her equilibrium

payoff of zero. Conditions (25)–(26) simply mean that the highest bid is submitted by the

highest possible types of the initiating and the non-initiating bidders.

Assumption 2 pins down the minimum bid (see Lebrun (2006) for a proof). Specifically,

this condition gives the lowest bid b (ŝ) to maximize

b (ŝ) ∈ arg max
b

(
v−1 (b)

ŝ

)N−1

(v (ŝ)− b) , (27)

which yields

(N − 1)
v (ŝ)− b (ŝ)

v′ (v−1 (b))
= v−1 (b) . (28)

The following lemma summarizes the unique equilibrium in the bidder-initiated first-

price auction. Existence and uniqueness results follow from Lebrun (2006).
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Lemma 4 (equilibrium in the bidder-initiated PV auction). There exists a

unique (up to the non-serious bids of types s < v−1 (b (ŝ)) of non-initiating bidders) equi-

librium in the bidder-initiated auction. The inverse bidding functions of the initiating and

non-initiating bidders, γI (b, ŝ) and γN (b, ŝ), satisfy equations (18) and (22) with boundary

conditions (23)–(26) and the lowest serious bid is given by (27).

Figure 2 illustrates the equilibrium bidding strategies for the case N = 2, v(s) = s, and

ŝ = 0.5:
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Figure 2: Equilibrium bids and expected payoffs of bidders in a bidder-initiated
private-value auction. The left panel plots the equilibrium bids as functions of signals
for the initiating bidder (the blue normal line) and the other bidder (the red dashed line).
The right panel plots the corresponding expected surpluses of each bidder.

We denote ΠI (s, ŝ) = ΠI (βI (s, ŝ) , s, ŝ) and ΠN (s, ŝ) = ΠN (βN (s, ŝ) , s, ŝ). The next

lemma shows that the payoff of the marginal type, ŝ, is higher if he is the one initiating the

auction than if the auction is initiated by another bidder:

Lemma 5. For any ŝ, ΠI (ŝ, ŝ) ≥ ΠN (ŝ, ŝ) in equilibrium.
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Proof. The equilibrium payoff of the initiating bidder with type ŝ is

ΠI (ŝ, ŝ) =

(
γN (b (ŝ) , ŝ)

ŝ

)N−1

(v (ŝ)− b (ŝ))

= max
b∈[b,b]

(
γN (b, ŝ)

ŝ

)N−1

(v (ŝ)− b)

≥
(
γN
(
b, ŝ
)

ŝ

)N−1 (
v (ŝ)− b

)
= v (ŝ)− b = ΠN (ŝ, ŝ) .

Therefore, ΠI (ŝ, ŝ) ≥ ΠN (ŝ, ŝ).

This result is in stark contrast with the case of common values, in which the boundary

type of the initiating bidder always obtains zero expected payoff, which, in particular, is

strictly less than a positive payoff of the non-initiating bidder with the same type. Lemma

5 shows that the ordering reverses once we move from the case of common values to the case

of private values. The intuition behind this result is that all else equal, the non-initiating

bidder in common value auctions bids higher than in private value auctions: not only does

it simply update its bid in the face of stronger competition (recognizing that the initiating

bidder has high valuation), which is the feature of private value auctions, but also it updates

its valuation upwards leading to an even stronger incentive to bid higher. This completely

erodes revenues of the boundary type of the initiating bidder in common value auctions but

not in private value auctions. Moreover, this result means that information revelation by

initiation, which was the driving force of the unraveling result in the common-values model,

does not lower incentives of bidders to approach the seller in the private-values model. On

the contrary, it helps: observing that no other bidder has approached the seller yet reveals

information to the bidder, who contemplates approaching the seller, that valuations of other

bidders are not too high.

4.1.2 A seller-initiated auction

Consider an auction initiated by the seller. If the auction is initiated by the seller, none of

the bidders has valuations above the initiation threshold ŝ, so all valuations are distributed

i.i.d. over [0, ŝ], where ŝ is some cut-off type. In this case, conditional on the auction
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taking place, types of both bidders are drawn from the same distribution, so the analysis

is standard (e.g., Krishna, 2010). Denote the equilibrium bids by β (s, ŝ) and the inverse

bidding function by γ (b, ŝ). The expected payoff of a bidder with signal s ∈ [0, ŝ] is

Π (b, s, ŝ) =

(
γ (b, ŝ)

ŝ

)N−1

(v (s)− b) .

The first-order condition is

(N − 1)
∂γ (b, ŝ)

∂b
(v (s)− b) = γ (b, ŝ) .

In equilibrium, the optimal bid is b = β (s, ŝ). Equivalently, s = γ (b, ŝ). Thus,

∂γ (b, ŝ)

∂b
=

γ (b, ŝ)

(N − 1) (v (γ (b, ŝ))− b) . (29)

This equation is to be solved subject to the boundary condition of γ (v (0) , ŝ) = 0. In-

tuitively, this condition means that the lowest type, s = 0, bids his valuation, v (0). In

particular, note that because the initial value condition is independent of ŝ, and ŝ enters

(29) only through γ (·, ·), the solution to (29) for a given b does not depend on ŝ. Thus, we

can write the inverse bidding function as a function of the bid only, γ (b, ŝ) = γ (b). The

following lemma summarizes the equilibrium.

Lemma 6 (equilibrium in the seller-initiated PV auction). There exists a

unique equilibrium in the seller-initiated auction, when types of both bidders are below ŝ.

The equilibrium inverse bidding strategy γ (b) solves (29) with the initial value condition

γ (v (0)) = 0.

Using an intuition similar to Lemma 5, the next lemma shows that a seller-initiated

auction leads to a higher expected payoff to type ŝ than an auction initiated by her:

Lemma 7. For any ŝ, Π (ŝ, ŝ) ≥ ΠI (ŝ, ŝ). The inequality is strict if ŝ > 0.
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Proof. Equilibrium bids take values from v (0) to β (ŝ). Hence,

Π (ŝ, ŝ) = Π (β (ŝ) , ŝ, ŝ)

≥ Π (b (ŝ) , ŝ, ŝ)

=

(
γ (b (ŝ) , ŝ)

ŝ

)N−1

(v (ŝ)− b (ŝ))

≥
(
v−1 (b (ŝ))

ŝ

)N−1

(v (s)− b) = ΠI (ŝ, ŝ) ,

with the strict inequality if γ (b (ŝ) , ŝ) > v−1 (b (ŝ)). The last inequality follows from

β (s, ŝ) ≤ v (s), which implies γ (b, ŝ) ≥ v−1 (b). Intuitively, no bidder bids above his

valuation. This implies that if a bidder bids b, then his signal is at least v−1 (b).

The comparison of Lemmas 5 and 7 implies that incentives of a bidder to approach the

seller depend on whether her outside option is to wait for another bidder to approach the

seller or for the seller to put the asset for sale himself. In the latter case, when a bidder

expects the seller to sell itself soon, regardless of being contacted by bidders, a bidder

benefits from waiting. In the extreme case, when a bidder expects the seller to sell the asset

a second later, no type of the bidder approaches the seller, as Π (ŝ, ŝ) > ΠI (ŝ, ŝ) for any

ŝ > 0. Intuitively, information revealed by initiation hurts the initiating bidder, because

non-initiating bidders realize that they face a stronger competitor and bid accordingly. This

effect is absent in the seller-initiated auction. In the former case, when the outside option

for a bidder is to wait until another bidder approaches the seller, information revelation

does not create the same incentives for a bidder to wait.

4.1.3 Off-equilibrium payoffs

Finally, for the next section we will also need off-equilibrium auction payoffs. First, consider

type s < ŝ initiating the auction. The payoff of this type depends on the non-serious bids

that types s < v−1 (b) of non-initiating bidders submit. The reason is that the non-serious

bids of the static auction may become serious off-equilibrium in a dynamic setting, if a low

type s < ŝ deviates and approaches the target. As long as non-serious bids are neither too

low nor exceed valuations of bidders, any structure of non-serious bids can be an equilibrium

outcome. For concreteness, we will assume that non-serious bidders bid their valuations.
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Then, the payoff of type s < ŝ initiating the auction is

ΠI (s, ŝ) = max
b

(
v−1 (b)

ŝ

)N−1

(v (s)− b)

Such non-serious bids maximally lower the payoff that a bidder gets from initiation. If

non-serious bids are lower, more types will approach the seller in dynamic equilibrium.

Second, consider type s > ŝ waiting until the auction is initiated by another bidder. He

expects the initiating bidder to bid βI (s) , s ∈ [ŝ, 1] and N − 2 of the other non-initiating

bidders to bid βN (s) , s ∈ [0, ŝ]. His payoff from bidding b is ΠN (b, s, ŝ). Because b (ŝ) =

arg maxb ΠN (b, ŝ, ŝ) and γI
(
b (ŝ) , ŝ

)
= γN

(
b (ŝ) , ŝ

)
= 1, ΠN (b, s, ŝ) is also maximized at

b (ŝ) for any s > ŝ. Therefore,

ΠN (s, ŝ) = v (s)− b (ŝ)

for any s ≥ ŝ.

Finally, consider type s > ŝ waiting until the auction is initiated by the seller. By the

same logic, β (ŝ) = arg maxb Π (b, s, ŝ) for any s > ŝ. Therefore,

Π (s, ŝ) = v (s)− β (ŝ) .

Note that Π (s, ŝ) ≥ ΠN (s, ŝ) for s > ŝ, as the lemmas above show that Π (ŝ, ŝ) ≥ ΠN (ŝ, ŝ)

and Π (s, ŝ)− ΠN (s, ŝ) = b (ŝ)− β (ŝ) = Π (ŝ, ŝ)− ΠN (ŝ, ŝ).

4.2 The Initiation Game: Stationary Solution

For this section, we will also focus on the stationary case, in which the cut-off is constant

over time at some level ŝ. Our focus here is on the levels of ŝ that can be supported in

the stationary solution. In the next section, we present a preliminary analysis of complete

dynamics.

We first solve a bidder’s problem taking the initiation strategy of the seller and all

other bidders as given. Applying the symmetry condition, we will obtain the equilibrium

initiation strategy of all bidders for any given constant initiation strategy of the seller.

Then, we will solve the seller’s problem taking the equilibrium strategy of bidders as given.
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4.2.1 A bidder’s problem

Suppose that the the seller initiates the auction with probability µdt over any short interval

of time [t, t+ dt], i.e., St = µdt. We will solve for the symmetric equilibrium initiation

strategy of bidders given µ and later characterize the optimal strategy of the seller. Suppose

that a bidder believes that each of N − 1 other bidders approaches the seller if and only if

their signal exceeds ŝ. Consider the remaining bidder with signal s. Let V (s, ŝ, µ) denote

the expected value of this bidder if his type is s and other bidders follow the cut-off rule ŝ

to approach the seller. V (s, ŝ, µ) satisfies

V (s, ŝ, µ) = max

{
ΠI (s, ŝ) ,

(N − 1)λ (1− ŝ) ΠN (s, ŝ) + µΠ (s, ŝ) + λX

r + (N − 1)λ (1− ŝ) + λ+ µ

}
(30)

Here, X denotes the value that a bidder gets when she is hit by the shock. If the shock

is such that the bidder leaves the game, X is exogenous. If the shock is such that a

bidder draws a new valuation, then X =
∫ 1

0
V (s′, ŝ, µ) ds′. The intuition behind (30) is

as follows. The expected value to the bidder is the maximum between approaching the

seller immediately and waiting. Approaching the seller immediately yields the expected

value of ΠI (s, ŝ). Waiting yields the expected value that equals the second term of (30).

With intensity (N − 1)λ (1− ŝ), a rival bidder with type above ŝ appears and approaches

the seller. In this case, the auction gets initiated by a rival bidder, so the bidder under

consideration gets the expected value of ΠN (s, ŝ). With intensity µ, the seller puts the

asset for sale without waiting for any bidder to come. Finally, with intensity λ, the bidder

gets a shock and obtains X. Because all events are independent, the expected value of

waiting is given by the second term of (30).

By continuity of ΠI (·), ΠN (·), and Π (·), the cut-off type must satisfy

ΠI (ŝ, ŝ) =
(N − 1)λ (1− ŝ) ΠN (ŝ, ŝ) + µΠ (ŝ, ŝ) + λX

r + (N − 1)λ (1− ŝ) + λ+ µ
.

It is more convenient to re-write this as

rΠI (ŝ, ŝ)+(N − 1)λ (1− ŝ) (ΠI (ŝ, ŝ)− ΠN (ŝ, ŝ)) = µ (Π (ŝ, ŝ)− ΠI (ŝ, ŝ))+λ (X − ΠI (ŝ, ŝ))

(31)

This equation has an intuitive interpretation. It states that for the indifferent type ŝ, the

cost of waiting equals the benefit. The cost of waiting (the left-hand side) consists of two
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components: delay in the surplus realized from the auction and the possibility that a rival

bidder of the high type appears. The benefit of waiting is that the bidder delays expecting

the seller to initiate the auction, as this leads to a higher expected payoff for the bidder.

In addition, the bidder may get a shock and obtain the payoff of X upon it. This term is

positive if the valuation of the bidder is low and negative if the valuation of the bidder is

high.

Note that ΠN (ŝ, ŝ) = v (ŝ)−b̄ (ŝ), Π (ŝ, ŝ) = v (ŝ)−β (ŝ), and ΠI (ŝ, ŝ) = maxb

(
v−1(b)
ŝ

)N−1

(v (ŝ)− b).
Thus equation (31) takes a simple form. Figure 3, Panel A illustrates the typical behavior

of costs and benefits of waiting as a function of ŝ and the equilibrium threshold for the

realistic parametrization: N = 2, v(s) = s, and ŝ = 0.5, r = 0.05, λ = 0.5 (bidders change

type on average every two years), µ = 0.2 (sellers put their asset for sale on average after

five years), X = 0.15. Here, a single solution obtains. Panel B illustrates the case of two so-

lutions, the larger of which is unstable, for the following parametrization: N = 2, v(s) = s,

and ŝ = 0.5, r = 0.05, λ = 0.5, µ = 0.55, X = 0.03.

The following proposition presents some analysis of (31):

Proposition 2. Let ŝ be the equilibrium cut-off type. It has the following properties:

1. ŝ > 0;

2. If X < X̄, where

X̄ =
(

1 +
r

λ

)
ΠI (1, 1)− µ

λ
(Π (1, 1)− ΠI (1, 1)) ,

then ŝ < 1;

3. If the equilibrium cut-off type ŝ for a given µ, denoted ŝ (µ), is unique, then ŝ (µ) is

always increasing in µ and strictly increasing if ŝ (µ) < 1.

4. There exists a finite µ∗ , such that for any µ > µ∗, the unique equilibrium cut-off type

is ŝ = 1.

Proof. Part (1) of the proposition follows from ΠI (0, 0) = ΠN (0, 0) = Π (0, 0) = 0.

Then, equation (31) implies 0 = λX, which cannot hold because X > 0. Consider part

(2) of the proposition. For ŝ = 1, (30) implies that approaching the seller yields ΠI (1, 1),
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Figure 3: The behavior of costs and benefits of waiting as a function of ŝ and the
equilibrium ŝ.

while waiting yields µΠ(1,1)+λX
r+λ+µ

. If X < X̄, then approaching the seller strictly dominates

waiting. Thus, types s close enough to ŝ = 1 strictly benefit from approaching the seller,

so ŝ = 1 is not an equilibrium. Next, consider part (3) of the proposition. If (31) is solved

by a unique ŝ, then function

fµ (s) ≡ rΠI (s, s) + (N − 1)λ (1− s) (ΠI (s, s)− ΠN (s, s))

−µ (Π (s, s)− ΠI (s, s))− λ (X − ΠI (s, s))

crosses zero at s = ŝ from below. This follows from continuity of fµ (s) and fµ (0) = −λX <

0. Next,

fµ′ (s)− fµ (s) = − (µ′ − µ) (Π (s, s)− ΠI (s, s)) < 0,

for all s > 0 and µ′ > µ. Because ŝ > 0, if fµ (ŝ) = 0, then fµ′ (ŝ) < 0. Uniqueness of the

solution means that ŝ (µ′) > ŝ (µ). Finally, consider part (4) of the proposition. Because

all ΠI (·), ΠN (·), and ΠI (·) are finite, and Π (s, s)−ΠI (s, s) > 0, limµ→∞ fµ (s) = −∞ for

all s > 0. Therefore, waiting strictly dominates approaching the seller for any ŝ for a high

enough µ.

Figure 4 illustrates the behavior of the equilibrium threshold, ŝ(µ), for the case N = 2,
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v(s) = s, and ŝ = 0.5, r = 0.05, λ = 0.5, X = 0.15.
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Figure 4: The behavior of the equilibrium threshold, ŝ(µ), as a function of µ.

4.2.2 The seller’s problem

Given ŝ, consider the best response of the seller. If the seller waits until he is approached

by bidders, his payoff is
Nλ (1− ŝ)

r +Nλ (1− ŝ)RB (ŝ) ,

where RB (ŝ) are expected revenues in the bidder-initiated auction, when types ŝ and above

approach the seller initiating the auction. If the seller deviates and initiates the auction

himself, his payoff is R (ŝ), where RS (ŝ) are expected revenues in the standard symmetric

auction when types of bidders are distributed over [0, ŝ]. Thus, the seller has no incentives

to deviate if and only if
Nλ (1− ŝ)

r +Nλ (1− ŝ)RB (ŝ) ≥ RS (ŝ) . (32)

If this condition is satisfied, then there exists an equilibrium in which all auctions are

bidder-initiated. Specifically, the seller waits until he is approached by a type s > ŝ.
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4.2.3 Equilibria

Combining the derivations of the previous two sections, we can characterize the set of cut-off

types ŝ that can be consistent with the stationary outcome of the initiation game.

Proposition 3 (equilibrium with only seller-initiated auctions). There always

exists an equilibrium in which ŝ = 1 and µ =∞.

Proof. First, consider the decision of the seller to deviate. For ŝ = 1, condition (32)

is violated, because the left-hand side of (32) equals zero and the right-hand side equals

RS (1) > 0. Thus, the seller does not benefit from deviation. Second, consider the decision

of a bidder to deviate. As Proposition 1 shows, for any µ > µ∗, in particular, for µ = ∞,

ŝ = 1 is the unique equilibrium initiation strategy of bidders for a fixed µ. Thus, no bidder

benefits from deviation.

Proposition 3 implies that there always exists an equilibrium in which bidders never

approach the seller, and the seller puts the asset for sale immediately. Intuitively, if the

seller believes that no bidder ever comes to the seller, then delaying the sale hurts the seller,

as delay does not allow to screen types of bidders. Similarly, if bidders believe that the

seller will put the asset for sale soon, no bidder benefits from approaching the seller.

To have both seller- and bidder-initiated auctions in equilibrium at the same time, the

seller must play mixed strategies. To play mixed strategies, the seller must be indifferent

between initiating the auction himself and waiting until he is approached by a bidder:

Nλ (1− ŝ)
r +Nλ (1− ŝ)RB (ŝ) = RS (ŝ) . (33)

This leads to the following result:

Proposition 4 (equilibria with seller- and bidder-initiated auctions). Consider

a pair (µ, ŝ) with µ > 0. If it is an equilibrium, ŝ and µ satisfy (33) and (31).

Note that equation (33) is independent of µ. Thus, it determines ŝ. Given the value of ŝ,

equation (31) determines the corresponding frequency µ with which the seller initiates the

auction without being approached by a bidder, so that the cut-off type is exactly indifferent
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between waiting and approaching the seller:

µ =
(r + λ) ΠI (ŝ, ŝ) + (N − 1)λ (1− ŝ) (ΠI (ŝ, ŝ)− ΠN (ŝ, ŝ))− λX

Π (ŝ, ŝ)− ΠI (ŝ, ŝ)
. (34)

Finally, there can be an equilibrium in which all auctions are bidder-initiated:

Proposition 5 (equilibrium with only bidder-initiated auctions). The necessary

condition for an equilibrium with only bidder-initiated auction is that the cut-off type ŝ

satisfies

rΠI (ŝ, ŝ) + (N − 1)λ (1− ŝ) (ΠI (ŝ, ŝ)− ΠN (ŝ, ŝ)) = λ (X − ΠI (ŝ, ŝ)) , (35)

Nλ (1− ŝ)
r +Nλ (1− ŝ)RB (ŝ) ≥ RS (ŝ) . (36)

These conditions are intuitive. The first condition is the special case of (31) for µ = 0.

The second condition is the incentive-compatibility condition for the seller, which states

that waiting for the bidder to approach the seller generates at least the same expected

payoff as immediate initiation.

Figure 5 illustrates equilibria with seller- and bidder-initiated auctions (three in total)

for the case N = 2, v(s) = s, r = 0.05, λ = 0.5, X = 0.15.

4.3 The Initiation Game: Complete Dynamics

The stationary restriction of Section 4.2 does not say anything about whether and how

the initiating game among bidders and the seller reaches stationarity. In this section,

we expand our analysis to a non-stationary setting: we assume that at time t = 0, the

bidders receive private signals which are distributed uniformly over [0, 1]. In other words,

we remove restriction 2. of Section 4.2. Instead, we conjecture and later confirm that the

cut-off ŝ(t) is a decreasing function of time: ŝ′(t) < 0. Now, at any time a bidder can

initiate the auction either because his identity (or type) changes or because the decreasing

initiation threshold reaches his current type: both of these events can happen with positive

probability and, from the perspective of non-initiating bidders, are indistinguishable. The

bidders will adjust their strategies, both at the bidding and initiation stage, in response
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to this additional uncertainty. As a result, we start to explore complete dynamics with

solving for the equilibria in bidder- and seller-initiated auctions off-steady state using our

conjecture about ŝ(t). Next, we solve a bidder’s problem taking the initiation strategy of

the seller and all other bidders as given, and confirm the conjecture. At the moment, we

assume that the seller can initiate the auction with constant probability µdt over any short

interval of time dt. To be completed: solve for the joint equilibrium initiation strategies of

all bidders and the seller.

4.3.1 Equilibrium in a bidder-initiated auction

Suppose that bidder 1 approaches the seller if and only if his signal exceeds ŝ(t) which

in this subsection, for simplicity, we will still denote as ŝ. At the auction stage bidder

1 believes that the types of other bidders are distributed uniformly over [0, ŝ]. However,

because ŝ is, by conjecture, decreasing with time, other bidders believe that the type of

bidder 1 is either equal exactly ŝ with conditional probability p = −ŝ′/ŝ
λ(1−ŝ)−ŝ′/ŝ or is distributed

uniformly over [ŝ, 1] with conditional probability 1 − p. p accounts for the fact that the

probability over any short interval of time dt that the initiating bidder’s identity or type

has changed to a value in the interval [ŝ, 1] is λdt(1 − ŝ) while the same probability that

the initiating bidder’s type remains the same but initiation is triggered by a change in ŝ
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is −ŝ′dt/ŝ. Unlike before, we will define equilibrium bidding functions through cumulative

distribution functions. Specifically, let FN (b, ŝ, p) denote the probability that bid b wins

against a random bid of a single rival non-initiating bidder.10 Similarly, let FI (b, ŝ, p) denote

the probability that bid b wins against the random bid of the rival initiating bidder.

We conjecture that the equilibrium takes the following form. The set of “serious”

bids is
[
b(ŝ, p), b(ŝ, p)

]
. The non-initiating bidder i bids βN (si, ŝ, p) ∈

[
b(ŝ, p), b(ŝ, p)

]
, if

si ≥ b(ŝ, p). The initiating bidder of type ŝ plays the mixed strategy of bidding over interval[
b(ŝ, p), b̂(ŝ, p)

]
for some b̂(ŝ, p) ∈

[
b(ŝ, p), b(ŝ, p)

]
. The initiating bidder of type si > ŝ bids

βI (si, ŝ, p) ∈
[
b̂(ŝ, p), b(ŝ, p)

]
. Note that FI

(
b̂
)

= p.

Consider the non-initiating bidder with type s. He solves the problem

max
b
FI (b, ŝ, p)FN−2

N (b, ŝ, p) (v(s)− b) .

Intuitively, if a non-initiating bidder bids b, it wins against the bid of the initiating bidder

with probability FI(b, ŝ, p) and against the bid of each single rival non-initiating bidder

with probability FN(b, ŝ, p). Conditional on winning against bids of every rival bidder, the

non-initiating bidder gets the payoff of v(s) − b. In separating equilibrium, a given bid

b ∈
[
b(ŝ, p), b(ŝ, p)

]
is an optimal bid for type s(b) such that s(b)/ŝ = FN (b, ŝ, p), that

is, the chance of winning with bid b against a non-initiating bidder is Prob(s < s(b)|s ∈
U [0, ŝ]) = s(b)/ŝ. Therefore, the following first-order condition must hold:(

∂FI (b, ŝ, p)

∂b
+ (N − 2)FI(b, ŝ, p)

∂FN (b,ŝ,p)
∂b

FN(b, ŝ, p)

)
(v(FN (b, ŝ, p) ŝ)− b) = FI (b, ŝ, p) . (37)

Next, consider the initiating bidder of type ŝ. Randomization among bids b ∈
[
b(ŝ, p), b̂(ŝ, p)

]
requires that

FN−1
N (b, ŝ, p) (v(ŝ)− b) = C (38)

for any b ∈
[
b(ŝ, p), b̂(ŝ, p)

]
and some constant C. If the above condition does not hold the

initiating bidder will prefer to deviate to the most profitable set of bids.

10The bid of a rival non-initiating bidder is random from the perspective of the bidder making bid b
because the latter does not know the signal of the former.
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Finally, consider the initiating bidder of type s > ŝ. He solves the problem

max
b
FN−1
N (b, ŝ, p) (v(s)− b) ,

which yields the first-order condition (N−1)∂FN (b,ŝ,p)
∂b

(v(s)− b) = FN (b, ŝ, p). In separating

equilibrium, a given bid b ∈
[
b̂(ŝ, p), b(ŝ, p)

]
is an optimal bid for type s(b) such that

p + (1 − p) s(b)−ŝ
1−ŝ = FI(b, ŝ, p), that is, the chance of winning with bid b ≥ b̂(ŝ, p) against

the initiating bidder is pProb(s < s(b)|s = ŝ) + (1 − p)Prob(s < s(b)|s ∈ U [ŝ, 1]) =

p+ (1− p) s(b)−ŝ
1−ŝ . Therefore, we have the following optimal condition:

(N − 1)
∂FN (b, ŝ, p)

∂b

(
v

(
ŝ+

FI (b, ŝ, p)− p
1− p (1− ŝ)

)
− b
)

= FN (b, ŝ, p) , (39)

for any b ∈
[
b̂(ŝ, p), b(ŝ, p)

]
.

The system of three equations, (37)–(39), is solved subject to the following boundary

conditions:

FI
(
b(ŝ, p), ŝ, p

)
= FN

(
b(ŝ, p), ŝ, p

)
= 1, (40)

FI (b(ŝ, p), ŝ, p) = 0, (41)

FN (b(ŝ, p), ŝ, p) =
v−1(b(ŝ, p))

ŝ
, (42)

FI

(
b̂(ŝ, p), ŝ, p

)
= p. (43)

These conditions are similar to (23)–(26) but also account for randomization by the bound-

ary type of the initiating bidder. From the boundary condition (42) and (38), we can

write

FN (b, ŝ, p) =
v−1(b(ŝ, p))

ŝ

(
v(ŝ)− b(ŝ, p)
v(ŝ)− b

) 1
N−1

(44)

for any b ∈
[
b(ŝ, p), b̂(ŝ, p)

]
.

The minimum bid b(ŝ, p) is determined from the following argument. Bid b(ŝ, p) must

be optimal for the initiating bidder of type ŝ. Therefore,(
v−1(b(ŝ, p))

ŝ

)N−1

(v(ŝ)− b) ≥ FN−1
N (b, ŝ, p) (v(ŝ)− b) ∀b.
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In equilibrium, no type of the initiating bidder ever bids above her valuation: βN (s) ≤ v(s).

Therefore, β−1
N (b) ≥ v−1(b), which implies FN (b) ≥ v−1(b)

ŝ
. Hence,

(
v−1(b(ŝ, p))

ŝ

)N−1

(v(ŝ)− b(ŝ, p)) ≥
(
v−1(b)

ŝ

)N−1

(v(ŝ)− b) ∀b.

Therefore,

b(ŝ, p) = arg max
b

(
v−1(b)

ŝ

)N−1

(v(ŝ)− b) , (45)

which yields

(N − 1)
v (ŝ)− b (ŝ, p)

v′ (v−1 (b(ŝ, p)))
= v−1 (b(ŝ, p)) . (46)

The following lemma summarizes the unique equilibrium in the bidder-initiated first-

price auction in the off-steady state setting:

Lemma 8 (equilibrium in the bidder-initiated PV auction, off-steady state

setting). There exists a unique (up to the non-serious bids of types s < v−1 (b (ŝ, p)) of non-

initiating bidders) equilibrium in the bidder-initiated auction. The equilibrium probabilities

of winning with bid b against a non-initiating bidder and the initiating bidder, FN (b, ŝ, p)

and FI (b, ŝ, p), satisfy equations (37)–(39) with boundary condition (40)–(43) and the lowest

serious bid is given by (45).

Section 5.3 illustrates the solution specializing to the case N = 2 and v(s) = s. Figure

6 illustrates the equilibrium bidding strategies for the case N = 2, v(s) = s, ŝ = 0.5, and

p = 0.5. For the same case, Figure 7 shows the behavior of b̂(ŝ, p) and b(ŝ, p) as functions

of the conditional probability that the initiating bidder is of the boundary type, p. As

p increases, the gap between the two threshold bids decreases. As can be seem from the

graph, b̂(ŝ, p) and b(ŝ, p), indeed, constitute an equilibrium not only in bidding strategies

but also in the roles of the bidders: the boundary type of the initiating bidder, who receives

the payoff of ŝ/4 = 1/4, does not find it profitable to become a non-initiating bidder and

win with probability one: in case of such deviation, the payoff is ŝ− b(ŝ, p) ≤ 1/4 and the

equality obtains only for p = 1.
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4.3.2 Equilibrium in a seller-initiated auction

If the auction is initiated by the seller, all valuations are distributed i.i.d. over [0, ŝ] where

ŝ is time-varying cut-off type. As a result, auction outcomes are similar to Section 4.1.2.

The following lemma summarizes the equilibrium:

Lemma 9 (equilibrium in the seller-initiated PV auction, off-steady state

setting). There exists a unique equilibrium in the seller-initiated auction, when types of

both bidders are below ŝ. The equilibrium inverse bidding strategy γ (b) solves (29) with the

initial value condition γ (v (0)) = 0.

4.3.3 A bidder’s initiation problem

As before, we focus on symmetric Markov perfect equilibria, in which bidders play cut-off

strategies. In contrast to Section 4.2., we remove the stationarity restriction. We solve

a bidder’s problem taking the initiation strategy of the seller and all other bidders as

given (currently, we assume that the seller initiates with the same probability over any

short interval of time). Applying the symmetry condition, we will obtain the equilibrium

initiation strategy of all bidders for any given constant initiation strategy of the seller.

Suppose that the the seller initiates the auction with probability µdt over any short

interval of time [t, t+ dt], i.e., St = µdt. Suppose that a bidder believes that each of

N −1 other bidders approaches the seller either because her signal strictly exceeds ŝ, which

happens with probability λ(1 − ŝ)dt, or because a decreasing ŝ reaches its current signal,

which happens with probability −ŝ′dt/ŝ. Consider the remaining bidder with signal s. Let

V (s, t, µ) denote the expected value of this bidder if his type is s and other bidders follow

the cut-off rule ŝ(t) to approach the seller. V (s, t, µ) satisfies

V (s, t, µ) = max

{
ΠI (s, ŝ, p) ,

V ′t (s, t, µ) + (N − 1) (λ (1− ŝ)− ŝ′/ŝ) ΠN (s, ŝ, p) + µΠ (s, ŝ) + λX

r + (N − 1) (λ (1− ŝ)− ŝ′/ŝ) + λ+ µ

}
= max

{
ΠI (s, ŝ, p) ,

V ′t (s, t, µ) + (N − 1)λ 1−ŝ
1−pΠN (s, ŝ, p) + µΠ (s, ŝ) + λX

r + (N − 1)λ 1−ŝ
1−p + λ+ µ

}
. (47)

Here, X denotes the value that a bidder gets when she is hit by the shock. If the shock is

such that the bidder leaves the game, X is exogenous. For the off-steady state setting, we
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specialize to this assumption. The intuition behind (47) is as follows. The expected value

to the bidder is the maximum between approaching the seller immediately and waiting.

Approaching the bidder immediately yields the expected value of ΠI (s, ŝ, p). Waiting yields

the expected value that equals the second term of (47). The change in the continuation

value with time is captured by V ′t (s, t, µ). With intensity (N − 1)λ (1− ŝ), a rival bidder

with type above ŝ appears and approaches the seller. Also, with intensity − (N − 1) ŝ′/ŝ =

(N − 1) p
1−pλ(1 − ŝ), one of the rival bidders whose type has not changed reaches the

decreasing initiation threshold. In these cases, the auction gets initiated by a rival bidder,

so the bidder under consideration gets the expected value of ΠN (s, ŝ, p). With intensity

µ, the seller puts the asset for sale without waiting for any bidder to come. Finally, with

intensity λ, the bidder gets a shock and obtains X. Because all events are independent, the

expected value of waiting is given by the second term of (47).

By continuity of ΠI (·), ΠN (·), and Π (·), the cut-off type must satisfy

ΠI (ŝ, ŝ, p) =
V ′t (ŝ, t, µ) + (N − 1)λ 1−ŝ

1−pΠN (ŝ, ŝ, p) + µΠ (ŝ, ŝ) + λX

r + (N − 1)λ 1−ŝ
1−p + λ+ µ

.

In addition, the smooth-pasting condition at ŝ must be satisfied:

V ′t (s, t, µ) = Π′I,2 (ŝ, ŝ, p) ŝ′ + Π′I,3 (ŝ, ŝ, p) p′.

Lemma 10 (Smooth-pasting condition for the value function, off-steady state

setting). The smooth-pasting condition for the boundary type of the initiating bidder, ŝ, is

V ′t (s, t, µ) = − p

1− pλŝ(1−ŝ)(N−1)FN−2
N (b̂(ŝ, p), ŝ, p)

∂FN(b̂(ŝ, p), ŝ, p)

∂ŝ
(v(ŝ)−b̂(ŝ, p)). (48)

Proof. First, take a partial derivative of ΠI (s, ŝ, p) with respect to ŝ and calculate it

at point s→ ŝ+, using that for the initiating bidder, lims→ŝ+ b(s, ŝ, p) = b̂(ŝ, p):

Π′I,2 (ŝ, ŝ, p) = (N − 1)FN−2
N (b̂(ŝ, p), ŝ, p)

(
∂FN(b̂(ŝ, p), ŝ, p)

∂b̂

∂b̂(ŝ, p)

∂ŝ
+
∂FN(b̂(ŝ, p), ŝ, p)

∂ŝ

)
(v(ŝ)− b(ŝ, p))

−FN−1
N (b̂(ŝ, p), ŝ, p)

∂b̂(ŝ, p)

∂ŝ
.
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The first-order condition for the initiating bidder at s→ ŝ+ is

(N − 1)
∂FN(b̂(ŝ, p), ŝ, p)

∂b̂
(v(ŝ)− b(ŝ, p)) = FN(b̂(ŝ, p), ŝ, p),

which gives

Π′I,2 (ŝ, ŝ, p) = (N − 1)FN−2
N (b̂(ŝ, p), ŝ, p)

∂FN(b̂(ŝ, p), ŝ, p)

∂ŝ
(v(ŝ)− b(ŝ, p)).

From (44), FN

(
b̂(ŝ, p), ŝ, p

)
= v−1(b(ŝ,p))

ŝ

(
v(ŝ)−b(ŝ,p)
v(ŝ)−b̂(ŝ,p)

) 1
N−1

is fully characterized. Second, take

a partial derivative of ΠI (s, ŝ, p) with respect to p and calculate it at point s→ ŝ+, using

that for the initiating bidder, lims→ŝ+ b(s, ŝ, p) = b̂(ŝ, p):

Π′I,3 (ŝ, ŝ, p) = (N − 1)FN−2
N (b̂(ŝ, p), ŝ, p)

(
∂FN(b̂(ŝ, p), ŝ, p)

∂b̂

∂b̂(ŝ, p)

∂p
+
∂FN(b̂(ŝ, p), ŝ, p)

∂p

)
(v(ŝ)− b(ŝ, p))

−FN−1
N (b̂(ŝ, p), ŝ, p)

∂b̂(ŝ, p)

∂p
.

Again, using the first-order condition for the initiating bidder at s→ ŝ+,

Π′I,3 (ŝ, ŝ, p) = (N − 1)FN−2
N (b̂(ŝ, p), ŝ, p)

∂FN(b̂(ŝ, p), ŝ, p)

∂p
(v(ŝ)− b(ŝ, p)).

Note that for a given b, FN

(
b̂(ŝ, p), ŝ, p

)
= 0 because it does not depend on p. Hence,

Π′I,3 (ŝ, ŝ, p) = 0.

Finally, ŝ′ = − p
1−pλŝ(1− ŝ). This concludes the proof. An example for N = 2, v(s) = s is

given in Section 5.4.

It is more convenient to re-write the equation for the cut-off type as

rΠI (ŝ, ŝ, p)+(N − 1)λ
1− ŝ
1− p (ΠI (ŝ, ŝ, p)−ΠN (ŝ, ŝ, p))−V ′t (ŝ, t, µ) = µ (Π (ŝ, ŝ)−ΠI (ŝ, ŝ, p))+λ (X −ΠI (ŝ, ŝ, p)) .

(49)

Equation (49) is a differential equation on ŝ(t) (because p is a function of ŝ′(t)) with the
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Figure 8: The dynamics of the boundary type, ŝ, and profits of boundary-type
bidders. Panel A plots the behavior of the conditional probability that the initiating bidder
is of the boundary type, p(t), as a function of the boundary type, ŝ(t). The dynamics of

the boundary type is given by the differential equation ŝ′(t) = − p(ŝ(t))
1−p(ŝ(t))λŝ(t)(1 − ŝ(t)).

Panel B plots profits of the boundary initiating bidder (the blue normal line) and a non-
initiating bidder bidder (the red dashed line) as a function of the boundary type. ŝ(∞) is
the stationary boundary type.
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initial condition ŝ(0) = 1. Its solution gives the evolution of ŝ(t) over time. This equation

has an intuitive interpretation. It states that for the indifferent type ŝ, the cost of waiting

equals the benefit. The cost of waiting (the left-hand side) consists of three components:

delay in the surplus realized from the auction, the possibility that a rival bidder of the high

type appears, and the decrease in the continuation value brought about by the change in

the initiation threshold. The benefit of waiting is that the bidder delays expecting the seller

to initiate the auction, as this leads to a higher expected payoff for the bidder. In addition,

the bidder may get a shock and obtain the payoff of X upon it. This term is positive if the

valuation of the bidder is low and negative if the valuation of the bidder is high. Section

5.4 illustrates the solution specializing to the case N = 2 and v(s) = s. Figure 8 illustrates

the behavior of p(t) as a function of ŝ(t), as well as the behavior of profits of boundary

initiating and non-initiating bidders, for this case, where r = 0.05, λ = 0.5 (bidders change

type on average every two years), µ = 0.2 (sellers put their asset for sale on average after

five years), X = 0.15.

The following proposition presents some analysis of (49):

Proposition 6. Let ŝ(t) be the equilibrium time-dependent cut-off type in the non-

stationary setting. It has the following properties:

1. ŝ(t) > 0;

2. ŝ′(t) = 0 if the stationary cut-off type, ŝ, is equal to 1. ŝ′(t) < 0 if the stationary

cut-off type, ŝ, is less than 1.

3. As t→∞, ŝ(t)→ ŝ.

4. If the equilibrium cut-off type ŝ(t) for a given µ, denoted ŝ (t, µ), is unique, then

ŝ (t, µ) is always increasing in µ and strictly increasing if ŝ (t, µ) < 1.

Proof. [TO BE COMPLETED]

4.3.4 The seller’s initiation problem

[TO BE COMPLETED]
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4.3.5 Equilibria

[TO BE COMPLETED]

5 Special case: Two bidders and linear valuations

In the special case of N = 2 and v (s) = s, closed-form solutions are attainable. Thus, it is

useful to illustrate the results using this special case.

5.1 Equilibria in auctions, stationary setting

Consider a bidder-initiated auction. The auction becomes a special case of a problem

studied in Kaplan and Zamir (2012). Equations (18) and (22) simplify to

γN,1 (b, ŝ) (γI (b, ŝ)− b) = γN (b, ŝ) ,

γI,1 (b, ŝ) (γN (b, ŝ)− b) = γI (b, ŝ)− ŝ.

Adding up the equations and integrating,

γN (b, ŝ) γI (b, ŝ) = (γN (b, ŝ) + γI (b, ŝ)) b− ŝb+ c, (50)

where c is the constant of integration. Boundary condition (27) yields

b (ŝ) =
ŝ

2
.

Evaluating (50) at b = b (ŝ) and using the boundary conditions γI (b (ŝ)) = ŝ and γN (b (ŝ)) =

b (ŝ), we obtain c = ŝ2

4
. Evaluating (50) at b = b̄ (ŝ) and using the boundary conditions

γI
(
b̄ (ŝ)

)
= 1 and γN

(
b̄ (ŝ)

)
= ŝ, we obtain

b (ŝ) = ŝ− ŝ2

4
.

This gives us the range of bids.

From (50):

γN (b) =
bγI (b)− bŝ+ c

γI (b)− b .
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Plugging into the second differential equation in the original system:

γ′I (b)
(
b2 − bŝ+ c

)
= (γI (b)− ŝ) (γI (b)− b) .

The solution (Kaplan and Zamir, 2012) is

γI (b) = ŝ+
ŝ2

(ŝ− 2b) cIe
− ŝ

ŝ−2b − 4b
.

Similarly, the solution for γN (b) is

γN (b) =
ŝ2

(ŝ− 2b) cNe
ŝ

ŝ−2b + 4 (ŝ− b)
,

where constants cN and cI are determined from the initial value conditions γI

(
ŝ− ŝ2

4

)
= 1

and γN

(
ŝ− ŝ2

4

)
= ŝ.

If the auction is seller-initiated, in equilibrium each bidder bids half of her valuation

(e.g., Krishna, 2010)

β (s) =
1

2
s.

It is interesting to compare the payoffs of the boundary type ŝ in all three cases: if she

approached the seller, if another bidder approached the seller, and if the seller put the asset

for sale without bidder approached by anyone.

ΠI (ŝ, ŝ) =
b (ŝ)

ŝ
(ŝ− b (ŝ)) =

ŝ

4
,

ΠN (ŝ, ŝ) = ŝ− b (ŝ) =
ŝ2

4
,

Π (ŝ, ŝ) = ŝ− β (ŝ) =
ŝ

2
.

It is easy to see that Π (ŝ, ŝ) > ΠI (ŝ, ŝ) > ΠN (ŝ, ŝ), as shown in Lemmas 4 and 6 for general

functions and the number of bidders.
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5.2 The initiation game, stationary setting

As before, consider first the decision problem for a bidder for a given µ. For the special

case of N = 2 and v (s) = s, we can plug in the closed-form values of ΠI (ŝ, ŝ), ΠN (ŝ, ŝ),

and Π (ŝ, ŝ) into equation (31). It simplifies to

r
ŝ

4
+ λ (1− ŝ)

(
ŝ

4
− ŝ2

4

)
= µ

(
ŝ

2
− ŝ

4

)
+ λ

(
X − ŝ

4

)
.

Simplifying,

(1− ŝ)2 ŝ

4
= X − r + λ− µ

λ

ŝ

4
(51)

The left-hand side of (51) is independent of the parameters. On ŝ ∈ [0, 1], it is an inverted

U-shaped function of ŝ that reaches its maximum, 1
27

, at ŝ = 1
3
. In addition, if the right-hand

side of (51) exceeds zero at ŝ = 1, there is a potential boundary equilibrium.

The intuition behind the potential multiplicity of equilibria lies in strategic comple-

mentarity of initiation decisions among bidders. Note that ΠI (ŝ, ŝ) − ΠN (ŝ, ŝ) is inverted

U-shaped on ŝ ∈ [0, 1]. If a bidder expects other bidders to not approach the seller unless

s is extremely high (i.e., ŝ→ 1), then the payoff of the cut-off type when she initiated the

auction versus when she waits until another bidder initiates the auction are close. Thus, a

bidder also has lower incentives to approach the seller. In contrast, if ŝ is in the middle so

that ΠI (ŝ, ŝ) − ΠN (ŝ, ŝ) is high, then a bidder also has incentives to approach the seller,

because waiting results in the significant risk of a reduction in the payoff, if another bidder

approaches the seller. Note that this argument is the opposite of that in the common-values

model. There initiation decisions of bidders were substitutes in the sense that if a bidder

expected another bidder to approach the seller, she had lower incentives to approach the

seller herself.

Because the expected revenues of the seller are not computable in closed-form, the

characterization of the seller’s problem is not simplified compared to the general case.

5.3 Equilibria in auctions, off-steady state setting

As before, b = ŝ
2
. Multiplying (37) by 1−ŝ

1−p , multiplying (39) by ŝ and adding the equations

up, we obtain (slightly abusing notation and omitting the last two arguments in FN , FI , b,
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b, and b̂):

1− ŝ
1− pF

′
I (b) (FN (b) ŝ− b) + ŝF ′N (b)

(
ŝ+

FI (b)− p
1− p (1− ŝ)− b

)
=

1− ŝ
1− pFI (b) + ŝFN (b)

d

(
ŝFN (b)

(
ŝ+

FI (b)− p
1− p (1− ŝ)

))
= d

(
1− ŝ
1− pFI (b) b+ ŝFN (b) b

)
ŝFN (b)

(
ŝ+

FI (b)− p
1− p (1− ŝ)

)
=

1− ŝ
1− pFI (b) b+ ŝFN (b) b+D,(52)

for some constant D. This equation holds for any b ∈
[
b̂, b
]
. Evaluating at b,

ŝ =
1− ŝ
1− pb+ ŝb+D

D = ŝ
(
1− b

)
− 1− ŝ

1− pb.

Evaluating at b̂,

ŝ
(
ŝ− b̂

) b (ŝ− b)
ŝ
(
ŝ− b̂

) =
1− ŝ
1− ppb̂+D

D =
ŝ2

4
− 1− ŝ

1− ppb̂ ⇒

b =
ŝ− ŝ2

4
+ 1−ŝ

1−ppb̂

ŝ+ 1−ŝ
1−p

. (53)

This equation pins down b, given b̂. In the stationary setting, p = 0 so b = ŝ2

4
− ŝ. We are

left with determining the remaining value, b̂. Going back to equation (52),

ŝFN (b)

(
ŝ− b+

FI (b)− p
1− p (1− ŝ)

)
=

1− ŝ
1− pFI (b) b+

ŝ2

4
− 1− ŝ

1− ppb̂,

implying that in the range b ∈
[
b̂, b
]
:

ŝFN (b) =

1−ŝ
1−pFI (b) b+ ŝ2

4
− 1−ŝ

1−ppb̂

ŝ− b+ FI(b)−p
1−p (1− ŝ)
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F ′I (b)

(
1−ŝ
1−pFI (b) b+ ŝ2

4
− 1−ŝ

1−ppb̂

ŝ− b+ FI(b)−p
1−p (1− ŝ)

− b
)

= FI (b)

F ′I (b)

1−ŝ
1−pFI (b) b+ ŝ2

4
− 1−ŝ

1−ppb̂− bŝ+ b2 − FI(b)−p
1−p (1− ŝ) b

ŝ− b+ FI(b)−p
1−p (1− ŝ)

= FI (b)

F ′I (b)

ŝ2

4
− 1−ŝ

1−ppb̂− bŝ+ b2 + p
1−p (1− ŝ) b

ŝ− b+ FI(b)−p
1−p (1− ŝ)

= FI (b) ,

F ′I (b) =

(
ŝ− b+ FI(b)−p

1−p (1− ŝ)
)
FI (b)

ŝ2

4
− 1−ŝ

1−ppb̂− bŝ+ b2 + p
1−p (1− ŝ) b

.

The boundary condition is

FI(b(b̂)) = FI

(
ŝ− ŝ2

4
+ 1−ŝ

1−ppb̂

ŝ+ 1−ŝ
1−p

)
= 1.

The above differential equation has a closed-form solution which is omitted for brevity and

available from the authors upon request. The remaining value, b̂, is numerically determined

from the second boundary condition:

FI(b̂) = p.

It can be shown that ŝ
2
≤ b̂ ≤ 3ŝ

4
and b̂(p) is strictly increasing, with the first (second)

condition holding as equality for p = 0 (p = 1); 3ŝ
4
≤ b and b(p) is strictly decreasing, with

the condition holding as equality if p = 1.

If the auction is seller-initiated, as before,

β (s) =
1

2
s.

The payoffs of the boundary type ŝ in all three cases: if she approached the seller, if

another bidder approached the seller, and if the seller put the asset for sale without bidder
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approached by anyone, are as follows:

ΠI (ŝ, ŝ, p) =
b (ŝ, p)

ŝ
(ŝ− b (ŝ, p)) =

ŝ

4
,

ΠN (ŝ, ŝ, p) = ŝ− b (ŝ, p) < ΠI (ŝ, ŝ, p) ,

Π (ŝ, ŝ) = ŝ− β (ŝ) =
ŝ

2
> ΠI (ŝ, ŝ, p) .

5.4 The initiation game, off-steady state setting

For a given µ, N = 2, and v(s) = s, equation (49) simplifies to

r
ŝ

4
+λ

1− ŝ
1− p

(
b(ŝ, p)− 3ŝ

4

)
− p

1− pλŝ(1−ŝ)
1

2

(
b̂(ŝ, p)− ŝ/2
ŝ− b̂(ŝ, p)

+
1

2

)
= µ

(
ŝ

2
− ŝ

4

)
+λ

(
X − ŝ

4

)
.

This equation sets up a differential equation for ŝ(t). Specifically, from the above equa-

tion, p(ŝ) can be obtained for any value of ŝ and then, a differential equation ŝ′(t) =

− p(ŝ(t))
1−p(ŝ(t))λŝ(t)(1− ŝ(t)) can be numerically solved with the initial condition ŝ(0) = 1.

6 Model Implications

In this section, we discuss implications of the model.

6.1 Efficiency of Takeovers and the Role for Shareholder Activism

The model implies that bidders are strongly disincentivized to approach targets in common-

value environments. What are the situations that represent these environments? Motiva-

tions for acquisitions can be broadly divided into two groups. First, acquisitions can be

motivated by synergies of a target with a particular bidder, such as potential gains from

combining technologies. Because high synergies with one bidder do not necessarily mean

high synergies with the other bidder, acquisitions driven by synergy motivations are closer

to the private-value setting. Second, acquisitions can be motivated by poor performance of

the incumbent management of the target. Because gains from replacing bad management

and/or changing policies are likely to be similar for different bidders, who, however, may

have different estimates ot the value created, such environments are closer to the common-

value setting. Thus, the paper implies that it is precisely the second type of targets that
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potential bidders have little incentives to initiate.

Assuming for a moment that inefficiently managed targets are represented well by the

pure common-values setting, the only way for such deals to take place is to be initiated by the

target. If, however, the management is entrenched and wants to preserve independence, the

target has little incentive to initiate the deal. As a consequence, inefficiently-run companies

can remain without a change in ownership for a long time, even if gains from the change in

ownership are substantial. Thus, the role of takeovers as a corporate governance mechanism

can be limited. In contrast to the free-rider problem in tender offers that applies uniformly

to both common- and private-value takeover bids in the form of tender offers, the problem

that we emphasize is cented around common-value takeovers; the effect is limited in private-

value settings, such as when synergies are bidder-specific.

The lack of incentive for bidders to initiate common-value auctions gives rise to alter-

native ways of promoting takeovers. In particular, it gives rise to shareholder activism.

Consider the target with an extremely entrenched management, such that it never wants to

put itself for sale no matter how high the potential surplus from the sale is. However, the

target can be forced to put itself for sale if the board is pressured by a blockholder, such

as an activist hedge fund. In this context, one think about cost I, introduced in Corollary

to Proposition 1, as the cost that a shareholder (or a potential shareholder) needs to incur

to convince the board of the target to sell itself. A case in point is the acquisition of Blue

Coat by Thoma Bravo, discussed in the introduction. In that case, an activist hedge fund

Elliot Associates accummulated a 9% ownership stake in Blue Coat and forced the board

of Blue Coat to auction the company off.

While the model focuses on a single target, it is straightforward to apply its results

for the problem of selecting one target out of a multitude of potential targets by a bidder.

Because of unraveling of initiation in common-value auctions, the model implies that bidders

will tend to approach targets, in which they have a substantive private value component

of valuation, even if other potential targets have considerably greater potential gains from

the acquisition.

6.2 Empirical Predictions about Initiation

Because the degree of the common-value component in the valuation is not directly ob-

servable, it needs to be proxied in empirical tests. A good proxy is whether the takeover
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battle is between strategic bidders or financial (private equity) bidders. Intuitively, because

different private equity firms tend to use similar strategies after they acquire the target,

their valuations should have a significant common component, even though they may have

different estimates of it. Given this, the model leads to the following predictions:

1. Contests among financial bidders are more likely to be target-initiated than contests

among strategic bidders.

2. In bidder-initiated PE deals, the initiating bidder is very likely to have a toehold.

3. A strategic bidder approaches targets in which she has a high private component of

the valuation (even if synergies with these are lower than with alternatives).

The first prediction is a direct consequence of the model. It is consistent with the

summary statistics on parties initiating takeovers in Fidrmuc et al. (2012). The second

prediction holds because a toehold allows the initiating bidder to preserve part of the

surplus, even if his type is the lowest.11 The last prediction follows from the discussion in

Section 6.1.

6.3 Empirical Predictions about Bidding

The model leads to a number of implications about how bidding is different in bidder- versus

seller-initiated takeover auctions. They are driven by endogenous initiation of takeovers by

bidders and the resulting asymmetries between the initiating bidder and his competitors.

1. All else equal, bidders in seller-initiated auctions are weaker (have lower valuations)

than bidders in bidder-initiated auctions.

2. Conditional on the same valuations, bidders bid less aggressively in seller-initiated

deals.

3. In bidder-initiated deals, the initiating bidder is stronger (has, on average, higher

valuations) than the other bidders.

11An earlier draft of this paper contains the formal model of toeholds in a simplified auction environment.
The results are available upon request.
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4. In bidder-initiated deals, conditional on the same valuation, the non-initiating bidder

bids more aggressively than the initiating bidder: βN (ŝ, ŝ) > βI (ŝ, ŝ).

5. In bidder-initiated deals, unconditionally on the exact valuation, the initiating bidder

bid more aggressively and wins more often: E [βI (s, ŝ)] > E [βN (s, ŝ)].

7 Conclusion

In this paper, we examine theoretically endogenous initiation of a first-price auction by

potential buyers and the seller. Each buyer has an option to approach the seller, sending a

message that will trigger the auction. Alternatively, the seller can choose to put the asset

for sale without waiting to be approached by a potential buyer. Our framework aims to

capture many real-world environments in which initiation of an auction is a strategic choice.

Examples include corporate takeover and intercorporate asset sales, as well as auctions of

art. Our main results relate information effects of bidder initiation or lack of thereof to

the valuation framework. We show that in a “common-values” auction, such as a battle

between several financial bidders for the target company, bidders are reluctant to approach

the seller, because it erodes their information rents. This effect is extreme: unraveling occurs

and no bidder ever approaches the seller. All auctions are initiated by the seller, if at all.

In particular, the timing of sale is uninformative in the sense that it is not sensitive to

bidders’ valuations. By contrast, in a “private-values” auction, the effect can be opposite.

Observing that no bidder has approached the seller yet reveals information that competitors

are weak, which incentivizes a bidder with a high enough valuation to approach the seller.

We also show that bidder- and seller-initiation are substitutes, so several equilibria, which

differ in how the auctions occur, can coexist in the “private-values” framework. Finally, we

derive a number of implications relating the initiating party to bids and auction outcomes.

Appendix

Example of the common-value setting: v (s1, s2) = 1
2

(s1 + s2). To find the equi-
librium, let φi (b, ŝ) = αi + βib. Plugging in to the boundary conditions and differential
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equations yields The first boundary condition is:

ŝ = α1 + β1
1

2
ŝ,

0 = α2 + β2
1

2
ŝ.

ŝ = α1 + α2 + (β1 + β2)
ŝ

2

The second boundary condition:

1 = α1 + β1b̄

ŝ = α2 + β2b̄

1 + ŝ = α1 + α2 + (β1 + β2) b̄

Pluggin into the differential equation yields:

• Bidder 1’s strategy:
φ1 (b, ŝ) = ŝ(2ŝ− 1) + 4(1− ŝ)b;

• Bidder 2’s strategy:
φ2 (b, ŝ) = −2ŝ2 + 4ŝb.

For both strategies, b ∈
[

1
2
ŝ, 1+2ŝ

4

]
. The bidding strategies given signals are inverses of

φ1 (b) and φ2 (b):

β1 (s, ŝ) =
s+ ŝ(1− 2ŝ)

4(1− ŝ) ;

β2 (s, ŝ) =
s+ 2ŝ2

4ŝ
.
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