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Abstract

We offer an investment-based explanation of momentum. The neoclassical theory of investment
implies that expected stock returns are related to expected investment returns, defined as the
next-period marginal benefits of investment divided by the current-period marginal costs of in-
vestment. Empirically, winners have higher expected growth of investment-to-capital and higher
expected marginal product of capital and consequently higher expected stock returns than losers.
The investment-based expected return model captures well the moment profits across a wide
array of momentum portfolios. However, the individual alphas for several testing portfolios are
large. All in all, we conclude that momentum is consistent with the value maximization of firms.
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1 Introduction

In an influential paper, Jegadeesh and Titman (1993) document that stocks with high recent perfor-

mance continue to earn higher average returns over the next three to twelve months than stocks with

low recent performance. Many subsequent studies have confirmed and refined Jegadeesh and Tit-

man’s original finding.1 For the most part, the literature has followed Jegadeesh and Titman in in-

terpreting momentum profits as irrational underreaction to firm-specific information. In particular,

Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong and

Stein (1999) have constructed behavioral models to explain the momentum anomaly using psycho-

logical biases such as conservatism, self-attributive overconfidence, and slow information diffusion.

Deviating from the bulk of the momentum literature, we propose and quantitatively evaluate

an investment-based explanation of momentum. As shown by Cochrane (1991) and Liu, Whited,

and Zhang (2009), under constant returns to scale, the neoclassical theory of investment implies

that stock returns equal levered investment returns. The latter returns, defined as the next-period

marginal benefits of investment divided by the current-period marginal costs of investment, are

linked to firm characteristics through firms’ optimality conditions for equity value maximization.

We use generalized method of moments (GMM) to match the means of levered investment

returns to the means of stock returns. As testing assets we use one-way momentum deciles of Je-

gadeesh and Titman (1993) and industry momentum quintiles of Moskowitz and Grinblatt (1999) as

well as two-way three-by-three portfolios sorted on momentum and one of the following characteris-

tics: size, firm age, trading volume, stock return volatility, and cash flow volatility (e.g., Hong, Lim,

and Stein (2000), Lee and Swaminathan (2000), Jiang, Lee, and Zhang (2005), and Zhang (2006)).

The investment-based expected return model does a good job in explaining momentum profits.

1Rouwenhorst (1998) documents a similar phenomenon in international markets. Moskowitz and Grinblatt (1999)
document a strong momentum effect in industry portfolios. Hong, Lim, and Stein (2000) show that small firms with
low analyst coverage display stronger momentum. Lee and Swaminathan (2000) document that momentum is more
prevalent in stocks with high trading volume. Jegadeesh and Titman (2001) show that momentum remains large in
the post-1993 sample. Lewellen (2002) shows that momentum profits also exist in size and book-to-market portfolios.
Jiang, Lee, and Zhang (2005) and Zhang (2006) report that momentum profits are higher among firms with higher
information uncertainty measured by size, age, return volatility, cash flow volatility, and analyst forecast dispersion.
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In particular, the winner-minus-loser decile has a small alpha of 1.23% per annum, which is neg-

ligible compared to the alphas from the traditional asset pricing models: 14.97% from the CAPM,

16.46% from the Fama-French (1993) model, and 14.87% from the standard consumption-CAPM

with power utility. (All testing portfolios are equal-weighted.) For the industry momentum quin-

tiles, the winner-minus-loser quintile has a small alpha of 0.61% in the investment-based model.

In contrast, the alphas are 6.65% in the CAPM, 9.73% in the Fama-French model, and 6.76% in

the standard consumption-CAPM. The alphas of individual testing portfolios are also substantially

smaller in the investment-based model than those in the traditional models.

For the double sorted momentum portfolios, the investment-based model continues to do well in

explaining momentum profits in that the model errors do not vary systematically with short-term

prior returns. For example, the winner-minus-loser tercile alphas are −0.46%, 1.13%, and 0.75% per

annum across the small, median, and big size terciles, respectively. In contrast, the alphas from the

traditional models are 9.52%–10.78% in the small size tercile, 8.06%–9.98% in the median size ter-

cile, and 5.55%–6.93% in the big size tercile. Across the trading volume terciles, the winner-minus-

loser alphas are 0.55%, 2.75%, and 1.27% in the investment-based model. In contrast, the alphas

from the traditional models are 3.85%–7.49% in the low volume tercile, 7.43%–8.49% in the median

volume tercile, and 10.19%–15.67% in the high volume tercile. Finally, across the low, median, and

high cash flow volatility terciles, the winner-minus-loser alphas are 1.24%, 1.03%, and −2.26%, re-

spectively. In contrast, the alphas from the traditional models are 6.26%–7.62% in the low volatility

tercile, 8.20%–9.95% in the median tercile, and 10.17%–12.00% in the high volatility tercile.

The shortcoming of the investment-based model is that it delivers large individual alphas for

some testing portfolios. In particular, the model has its worst fit in the nine cash flow volatility and

momentum portfolios. The individual alphas range from −8.35% to 7.62% per annum. Although

the alphas do not vary systematically with momentum, their magnitude is comparable with the

magnitude of the alphas from the traditional models. However, all the other sets of testing portfolios

have individual alphas that are smaller in magnitude than those from the traditional models.
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The investment-based model suggests several sources of cross-sectional variations of expected

stock returns. All else equal, firms with low investment-to-capital today, high expected growth rate

of investment-to-capital, high expected sales-to-capital, high market leverage today, low expected

rate of depreciation, and low expected corporate bond returns should earn higher expected stock

returns. Through extensive comparative statics, we show that the expected growth of investment-

to-capital is the most important source of momentum profits, and the expected sales-to-capital

ratio is the second most important. For example, eliminating the cross-sectional variation in the

expected growth of investment-to-capital would increase the alpha of the winner-minus-loser decile

to 13.17% per annum from 1.23% in the benchmark estimation. Without the cross-sectional vari-

ation in the expected sales-to-capital ratio, the winner-minus-loser alpha would be 5.44%. All the

other sources of expected stock returns are largely irrelevant for explaining momentum profits.

Our investment-based explanation of momentum is related to Johnson (2000) and Sagi and

Seasholes (2007). Johnson argues that the log price-to-dividend ratio is convex in expected growth,

meaning that stock returns (changes in the log price-to-dividend ratio) are more sensitive to changes

in expected growth when expected growth is high. Winners that have recently had large positive

return shocks are more likely to have positive shocks to expected growth than losers that have

recently had large negative return stocks. If the expected growth risk carries a positive premium,

winners should earn higher expected returns than losers. Sagi and Seasholes argue that growth op-

tions are riskier than assets in place. Winners with good recent performance have more risky growth

options that account for a larger fraction of equity value than losers with bad recent performance.

As such, winners should earn higher expected returns than losers.

The economic mechanisms in both Johnson (2000) and Sagi and Seasholes (2007) rely on the

expected growth spread between winners and losers. We complement their work in two ways. First,

using a different framework based on the neoclassical theory of investment, we show theoretically

that firms with high expected growth rates should earn higher expected stock returns than firms

with low expected growth rates, all else equal. Second, we show empirically via structural estimation
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that the expected growth is the most important driving force of momentum profits. More generally,

our work expands the investment-based asset pricing literature initiated by Cochrane (1991, 1996)

and Berk, Green, and Naik (1999). We adopt the investment-based expected return model from

Liu, Whited, and Zhang (2009), who study the relations of stock returns with earnings surprises,

book-to-market equity, and corporate investment. We instead study the momentum puzzle.

The rest of the paper is organized as follows. Section 2 sets up the model, Section 3 describes

our test design and data, Section 4 presents our empirical results, and Section 5 concludes.

2 The Model of the Firms

Because we adopt the Liu, Whited, and Zhang (2009) model, we keep its description brief. Firms use

capital and costlessly adjustable inputs to produce a homogeneous output. These inputs are chosen

each period to maximize operating profits, defined as revenues minus expenditures on the inputs.

Taking operating profits as given, firms choose investment to maximize the market value of equity.

Let Π(Kit,Xit) denote the operating profits of firm i at time t, in which Kit is capital and Xit

is a vector of exogenous aggregate and firm-specific shocks. We assume Π(Kit,Xit) has constant

returns to scale, meaning that Π(Kit,Xit) = Kit∂Π(Kit,Xit)/∂Kit. We further assume that firm

i has a Cobb-Douglas production function, meaning that the marginal product of capital is given

by ∂Π(Kit,Xit)/∂Kit = κYit/Kit, in which κ > 0 is the capital’s share in output and Yit is sales.

Capital evolves as Kit+1 = Iit + (1− δit)Kit, in which capital depreciates at an exogenous pro-

portional rate of δit. We allow δit to be firm-specific and time-varying as in the data. Firms incur

adjustment costs when investing. The adjustment cost function, denoted Φ(Iit,Kit), is increasing

and convex in Iit, decreasing in Kit, and has constant returns to scale in Iit and Kit. In particular,

we use the standard quadratic functional form: Φ(Iit,Kit) = (a/2)(Iit/Kit)
2Kit, in which a > 0.

Firms can borrow by issuing one-period debt. At the beginning of time t, firm i can issue debt,

denoted Bit+1, which must be repaid at the beginning of t+1. The gross corporate bond return
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on Bit, denoted rBit , can vary across firms and over time. Taxable corporate profits equal operating

profits less capital depreciation, adjustment costs, and interest expenses: Π(Kit,Xit) − δitKit −

Φ(Iit,Kit)− (rBit − 1)Bit. Let τ t denote the corporate tax rate at time t. Firm i’s payout is then:

Dit ≡ (1− τ t)[Π(kit,Xit)− Φ(Iit,Kit)]− Iit +Bit+1 − rBitBit + τ tδitKit + τ t(r
B
it − 1)Bit, (1)

in which τ tδitKit is the depreciation tax shield, and τ t(r
B
it − 1)Bit is the interest tax shield.

Let Mt+1 be the stochastic discount factor from t to t + 1. Taking Mt+1 as given, firm i

maximizes its cum-dividend market value of equity:

Vit ≡ max
{Iit+s,Kit+s+1,Bit+s+1}∞s=0

Et

[

∞
∑

s=0

Mt+sDit+s

]

, (2)

subject to a transversality condition: limT→∞Et [Mt+T Bit+T+1] = 0. The firm’s optimality condi-

tions imply that Et[Mt+1r
I
it+1

] = 1, in which rIit+1
is the investment return, defined as:

rIit+1 ≡

(1− τ t+1)

[

κ Yit+1

Kit+1
+ a

2

(

Iit+1

Kit+1

)2
]

+ τ t+1δit+1 + (1− δit+1)
[

1 + (1− τ t+1)a
(

Iit+1

Kit+1

)]

1 + (1− τ t)a
(

Iit
Kit

) . (3)

The investment return is the ratio of the marginal benefits of investment at period t+1 divided

by the marginal costs of investment at t. The optimality condition Et[Mt+1r
I
it+1

] = 1 means that

the marginal costs of investment equal the marginal benefits of investment discounted to time t. In

the numerator of the investment return, the term (1− τ t+1)κYit+1/Kit+1 is the after-tax marginal

product of capital. The term (1 − τ t+1)(a/2)(Iit+1/Kit+1)
2 is the after-tax marginal reduction in

adjustment costs. The term τ t+1δit+1 is the marginal depreciation tax shield. The last term in the

numerator is the marginal continuation value of the extra unit of capital net of depreciation, in

which the marginal continuation value equals the marginal costs of investment in the next period.

Define the after-tax corporate bond return as rBa
it+1

≡ rBit+1
−(rBit+1

−1)τ t+1, then Et[Mt+1r
Ba
it+1

] =

1. Define Pit ≡ Vit −Dit as the ex-dividend market value of equity, rSit+1 ≡ (Pit+1 +Dit+1)/Pit as

the stock return, and wit ≡ Bit+1/(Pit+Bit+1) as the market leverage. Then the investment return
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is the weighted average of the stock return and the after-tax corporate bond return:

rIit+1 = wit r
Ba
it+1 + (1− wit) r

S
it+1 (4)

(see Liu, Whited, and Zhang (2009, Appendix A) for a detailed proof). Solving for rSit+1 gives:

rSit+1 = rIwit+1 ≡
rIit+1

− wit r
Ba
it+1

1− wit
, (5)

in which we define rIwit+1
as the levered investment return.

3 Econometric Design

We lay out the GMM application in Section 3.1, and describe our data in Section 3.2.

3.1 GMM Estimation and Tests

We use GMM to test the first moment restriction implied by equation (5):

E
[

rSit+1 − rIwit+1

]

= 0. (6)

In particular, we define the expected return error (alpha) from the investment-based model as:

αq
i ≡ ET

[

rSit+1 − rIwit+1

]

, (7)

in which ET [·] is the sample mean of the series in brackets.

We estimate the parameters a and κ using GMM on equation (6) applied to momentum portfo-

lios. We use one-stage GMM with the identity weighting matrix to preserve the economic structure

of the portfolios (e.g., Cochrane (1996)). This choice befits our economic question because short-

term prior returns are economically important in providing a wide spread in the cross section of aver-

age stock returns. The identity weighting matrix also gives more robust (but less efficient) estimates.

Specifically, following the standard GMM procedure (e.g., Hansen and Singleton (1982)), we

estimate the parameters, b ≡ (a, κ), by minimizing a weighted combination of the sample moments
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(6). Let gT be the sample moments. The GMM objective function is a weighted sum of squares of

the model errors across a given set of assets, g′
TWgT , in which we use W = I, the identity matrix.

Let D = ∂gT /∂b and S a consistent estimate of the variance-covariance matrix of the sample errors

gT . We estimate S using a standard Bartlett kernel with a window length of five. The estimate of

b, denoted b̂, is asymptotically normal with variance-covariance matrix:

var(b̂) =
1

T
(D′WD)−1D′WSWD(D′WD)−1. (8)

To construct standard errors for the alphas on individual portfolios or a subset of alphas, we

use the variance-covariance matrix for the model errors, gT :

var(gT ) =
1

T

[

I−D(D′WD)−1D′W
]

S
[

I−D(D′WD)−1D′W
]′
. (9)

We follow Hansen (1982, lemma 4.1) to form a χ2 test that all model errors are jointly zero:

g′
T [var(gT )]

+
gT ∼ χ2(#moments−#parameters), (10)

in which χ2 denotes the chi-square distribution, and the superscript + denotes pseudo-inversion.

3.2 Data

Our sample of firm-level data is from the Center for Research in Security Prices (CRSP) monthly

stock file and the annual 2008 Standard and Poor’s Compustat industrial files. We include only

firms with fiscal yearend in December. Firms with primary SIC classifications between 4900 and

4999 or between 6000 and 6999 are omitted because the neoclassical theory of investment is unlikely

to be applicable to regulated or financial firms. The sample is from 1963 to 2008.

3.2.1 Testing Portfolios

To understand the driving forces behind momentum profits, we include as testing assets two sets of

one-way sorted portfolios including ten momentum deciles as in Jegadeesh and Titman (1993) and
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five industry momentum portfolios as in Moskowitz and Grinblatt (1999). We also use as testing

assets a list of double sorted three-by-three portfolios including nine size and momentum portfolios

as in Hong, Lim, and Stein (2000), nine age and momentum portfolios as in Zhang (2006), nine

trading volume and momentum portfolios as in Lee and Swaminathan (2000), nine stock return

volatility and momentum portfolios as in Zhang (2006), and nine cash flow volatility and momentum

portfolios as in Jiang, Lee, and Zhang (2005).

When forming momentum portfolios, we keep only firm-year observations with positive total

asset (Compustat annual item AT > 0), positive sales (SALE > 0), nonnegative debt (DLTT +

DTC ≥ 0), positive market value of asset (DLTT + DTC + CSHO × PRCC F > 0), positive gross

capital stock (PPEGT > 0) at the most recent fiscal year end, and positive gross capital stock one

year prior to the most recent fiscal year. Following Jegadeesh and Titman (1993), we also exclude

stocks with prices per share less than $5 at the portfolio forming month.

We construct momentum portfolios by sorting all stocks at the end of every month t on the basis

of their past six-month returns from t−6 to t−1, and hold the resulting ten deciles for the subsequent

six months from t+1 to t+6. We skip one month between the end of the ranking period and the be-

ginning of the holding period (month t) to avoid potential microstructure biases. We equal-weight

all stocks within a given portfolio. Because we use the six-month holding period while forming the

portfolios monthly, we have six portfolios for each decile in a given holding month. We first average

across these six portfolios to obtain monthly returns, and then calculate buy-and-hold annual re-

turns from July of each year to June of next year to match with annual levered investment returns.

The sample is annual from July 1963 to June 2008. We time-aggregate monthly returns from July of

each year to June of next year (instead of from January to December of a given year) to align the tim-

ing of annual stock returns with the timing of annual levered investment returns (see Section 3.2.3).

Moskowitz and Grinblatt (1999) document that trading strategies that buy stocks from past

winning industries and sell stocks from past losing industries are profitable, even after controlling
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for size, book-to-market, and individual stock momentum. We use the 20 industry classifications

as in Moskowitz and Grinblatt. Because we exclude financial firms and regulated utilities, we have

only 18 industries in our sample. We value-weight all stocks in a given industry portfolio. At the

end of each portfolio formation month t, we sort the 18 industry portfolios into quintiles based on

their prior six-month returns from t − 6 to t − 1. The top and bottom quintiles each have three

industries while the other three quintiles each have four industries. (We form quintiles instead of

deciles because the number of industries is too small to construct deciles.) We hold the resulting

quintile portfolios for the subsequent six months from t + 1 to t + 6. We again time-aggregate

monthly returns from July of each year to June of next year to form annual stock returns.

For the double sorted portfolios, in addition to past six-month returns, we need to measure

the other sorting variable including size, age, trading volume, stock return volatility, and cash flow

volatility. Size is market capitalization at the beginning of the portfolio formation month t. We

require firms to have positive market capitalization before including them into the sample. Firm

age is the number of months elapsed between the month when the firm first appears in the monthly

CRSP database and the portfolio formation month t.

Trading volume is the average daily turnover during the past six months from t− 6 to t− 1, in

which daily turnover is the ratio of the number of shares traded each day to the number of shares

outstanding at the end of the day. Following Lee and Swaminathan (2000), we restrict our sample

to include NYSE and AMEX stocks only when forming the nine trading volume and momentum

portfolios. The reason is that the number of shares traded for Nasdaq stocks is inflated relative to

NYSE and AMEX stocks because of the double counting of dealer trades.

Following Lim (2001) and Zhang (2006), we measure stock return volatility as the standard

deviation of weekly excess returns over the past six months from t − 6 to t − 1. Weekly returns

are from Thursday to Wednesday to mitigate bid-ask effects in daily prices. We calculate weekly

excess returns as raw weekly returns minus weekly risk-free rates. The daily risk-free rates are
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from Ken French’s Web site. We require a stock to have at least 20 weeks of date to enter the

sample. Cash flow volatility is the standard deviation of the ratio of cash flow from operations

scaled by total assets in the most recent five years prior to the portfolio forming month. We require

at least three years of data available to measure the standard deviation. Cash flow from operations

is earnings before extraordinary items minus total accruals, scaled by total assets, in which total

accruals are changes in current assets minus changes in cash, changes in current liabilities, and

depreciation expense plus changes in short-term debt (Compustat annual item (IB − (∆ACT −

∆CHE − ∆LCT − DP + ∆DLC))/TA).

To form a given set of double sorted portfolios, for example, the nine size and momentum port-

folios, we sort stocks independently into terciles at the end of each portfolio formation month t on

the market capitalization at the beginning of the month, and then on the prior six-month return

from t− 6 to t− 1. Taking intersections of the three size terciles and the three momentum terciles,

we form nine size and momentum portfolios. Skipping the current month t, we hold the resulting

portfolios for the subsequent six months from month t + 1 to t + 6. We equal-weight all stocks

within a given portfolio when calculating returns for the portfolio. Buy-and-hold annual returns

are calculated from July of each year to June of next year to match with annual levered investment

returns. The other sets of double sorted portfolios are constructed in a similar way.

3.2.2 Variable Measurement

We follow Liu, Whited, and Zhang (2009) in measuring characteristics used to construct the levered

investment returns. The capital stock, Kit, is gross property, plant, and equipment (Compustat

annual item PPEGT), and investment, Iit, is capital expenditures (CAPX) minus sales of prop-

erty, plant, and equipment (SPPE). We set the sales of property, plant, and equipment to be zero

when item SPPE is missing. The capital depreciation rate, δit, is the amount of depreciation (DP)

divided by the capital stock. Output, Yit, is sales (SALE). Total debt, Bit+1, is long-term debt

(DLTT) plus short term debt (DLC). Market leverage, wit, is the ratio of total debt to the sum of
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total debt and the market value of equity. We measure the tax rate, τ t, as the statutory corporate

income tax from the Commerce Clearing House’s annual publications.

Both stock and flow variables in Compustat are recorded at the end of year t. But in the model

stock variables dated t are measured at the beginning of year t and flow variables dated t are over

the course of year t. We take, for example, for the year 2003 any beginning-of-period stock variable

Ki2003 from the 2002 balance sheet and Ii2003 from the 2003 income or cash flow statement.

Firm-level corporate bond data are rather limited, and few or even none of the firms in several

testing portfolios have corporate bond returns. To measure the pre-tax corporate bond returns,

rBit+1
, in a broad sample, we follow Blume, Lim, and MacKinlay (1998) to impute the credit ratings

for firms with no crediting rating data from Compustat (annual item SPLTICRM). We assign the

corporate bond returns for a given credit rating (from Ibbotson Associates) to the firms with the

same credit ratings (see Liu, Whited, and Zhang (2009) for details of this imputation procedure).

3.2.3 Timing Alignment

We construct annual levered investment returns to match with annual stock returns. Constructing

annual portfolio characteristics underlying the levered investment returns is intricate because the

composition of the portfolios changes monthly. We use the following procedure analogous to Liu,

Whited, and Zhang’s (2009) procedure for the monthly rebalanced earnings surprises deciles.

For example, consider the 12 low momentum deciles formed in each month from July of year t to

June of year t+ 1. For each month we calculate portfolio-level characteristics by aggregating firm-

level characteristics over the firms in the low momentum decile. This cross-sectional aggregation

follows the practice in Fama and French (1995). For example, portfolio-level investment-to-capital

is the sum of investment for all the firms within the portfolio at time t divided by the sum of capital

for the same set of firms at time t. Because for a given low momentum decile, there are six portfo-

lios formed in each month of the six-month ranking period, we average the portfolio characteristics

across the six portfolios. In addition, because the portfolio composition changes from month to
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month, the portfolio characteristics also change from month to month. As such, we average these

portfolio characteristics over the 12 monthly low momentum deciles, and use these averages to con-

struct the levered investment returns. We repeat this procedure for the remaining nine momentum

deciles (deciles two to ten) (see Liu, Whited, and Zhang (2009, Appendix C) for more details of the

timing alignment). We use the same timing convention for all the other sets of momentum portfolios.

4 Empirical Results

To set the background, we report the tests of the CAPM, the Fama-French model, and the standard

consumption-CAPM for the momentum portfolios in Section 4.1. We then present the results from

testing the investment-based expected return model in Section 4.2.

4.1 Preliminaries

Table 1 reports the tests of the traditional asset pricing models. The standard consumption-CAPM

has the pricing kernel given by ρ(Ct+1/Ct)
−γ , in which ρ is time preference, γ is risk aversion, and

Ct is annual per capita consumption of nondurables and services from the Bureau of Economic

Analysis. The moment conditions are E[Mt+1(r
S
it+1

− rft+1)] = 0 and E[Mt+1rft+1] = 1. The

standard consumption-CAPM alpha is calculated as ET [Mt+1(r
S
it+1 − rft+1)]/ET [Mt+1].

Panel A reports the results for the ten momentum deciles. The average return increases mono-

tonically from the loser decile to the winner decile. The winner-minus-loser portfolio earns an

equal-weighted average return of 15.04% per annum, which is more than seven standard errors

from zero. We use equal-weighted returns precisely because these returns are harder for asset

pricing models to explain than value-weighted returns. The CAPM alpha of the winner-minus-

loser portfolio is 14.9%, which is more than eight standard errors from zero. The Fama-French

alpha is 16.46% (t = 8.2). Both models are strongly rejected by the Gibbons, Ross, and Shanken

(1989, GRS) test. The standard consumption-CAPM produces an alpha of 14.87% for the zero-

cost portfolio, but is within 0.7 standard errors from zero. This insignificance is probably due to

13



large measurement errors in consumption data. The economic magnitude of the error is large. In

addition, the χ2 test of the overidentification strongly rejects the model.

From Panel B, the industry momentum strategy is profitable. The average return goes from

9.46% per annum for the loser quintile to 16.33% for the winner quintile. The spread of 6.87% is

more than three standard errors from zero. The CAPM alpha and the Fama-French alpha for the

winner-minus-loser quintile are 6.65% and 9.73%, respectively, both of which are more than four

standard errors from zero. The consumption alpha of the zero-cost portfolio is 6.76%.

Panel C shows that momentum profits tend to be larger in small firms than in big firms. For

example, the winner-minus-loser tercile in the small-firm tercile has a CAPM alpha of 9.52% per

annum, which is larger than that in the big-firm tercile, 5.55%. The average return and the Fama-

French alpha follow a similar pattern. However, the consumption alpha of the zero-cost tercile is

slightly smaller in the small-size tercile than in the median-size tercile: 9.88% versus 9.98%. All

three models are again strongly rejected by the GRS test or the χ2 test of overidentification.

From Panel D, the magnitude of momentum profits decreases with firm age. The average return,

the CAPM alpha, the Fama-French alpha, and the consumption alpha in young firms are 10.09%,

10.11%, 11.50%, and 11.21% per annum, which are higher than those in old firms, 5.34%, 5.35%,

6.46%, and 7.33% respectively. Panel E shows that consistent with Lee and Swaminathan (2000),

momentum is stronger in stocks with high trading volume than in stocks with low trading volume.

The average return of the winner-minus-loser tercile increases from 6.26% in the low volume tercile

to 9.80% in the high volume tercile. The CAPM alpha, the Fama-French alpha, and the consump-

tion alpha of the winner-minus-loser tercile in the low volume tercile are 6.24%, 7.49%, and 3.85%,

which are lower than those in the high volume tercile, 10.19%, 11.44%, and 15.67%, respectively.

Momentum also increases with stock return and cash flow volatilities. From Panel F, the aver-

age return of the winner-minus-loser tercile increases from 4.36% in the low return volatility tercile

to 10.96% in the high return volatility tercile. The CAPM alpha, the Fama-French alpha, and the
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consumption alpha of the zero-cost portfolio are all lower in the low return volatility tercile than

in the high return volatility tercile. From Panel G, the results for the nine cash flow volatility and

momentum portfolios are largely similar. All three models are again strongly rejected.

4.2 Testing the Investment-Based Expected Return Model

With this background, we turn to the tests on the investment-based expected return model.

4.2.1 Point Estimates and Overall Model Performance

Table 2 reports the GMM parameter estimates and tests of overidentification for each set of momen-

tum portfolios. There are only two parameters in the model: the adjustment cost parameter, a, and

the capital’s share, κ. The estimates of a are between 3.26 and 7.82. The estimate is 7.82 for the

industry momentum portfolios, and is about 1.9 standard errors from zero. All the other six sets of

testing portfolios deliver significantly positive estimates of a. The evidence implies that the adjust-

ment cost function is increasing and convex in investment. The capital’s share is estimated to be be-

tween 0.14 and 0.20. The estimates are precise with small standard errors ranging from 0.02 to 0.03.

The tests of overidentification show that the investment-based model is not formally rejected.

The p-values range from 0.24 to 0.41. Except for the cash flow volatility and momentum port-

folios, the mean absolute errors (m.a.e. hereafter) produced from the investment-based model are

no greater than those from the traditional asset pricing models. In particular, the m.a.e. of the

momentum deciles is 1.72% per annum, which is lower than those from the CAPM (3.66%), the

Fama-French model (3.03%), and the standard consumption-CAPM (2.75%). The m.a.e. of the

industry momentum quintiles is 0.49%, which is lower than those from the CAPM (1.88%), the

Fama-French model (2.89%), and the standard consumption-CAPM (1.68%).

The m.a.e. of the nine size and momentum portfolios is 3.44%, which is similar to those from the

traditional models ranging from 3.16% to 3.37%. The m.a.e. of the age and momentum portfolios

is 1.37% in the investment-based model, which is smaller than those from the traditional models
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ranging from 3.03% to 3.62%. The m.a.e.’s across the trading volume and momentum portfolios and

across the stock return volatility and momentum portfolios are similar to those from the traditional

models. However, the investment-based model produces a large m.a.e. of 5.62% per annum across

the cash flow volatility and momentum portfolios, which is larger than those from the traditional

models (ranging from 3.37% to 3.77%).

4.2.2 Alphas

Table 2 only reports overall model performance. To study whether the errors vary systematically

across momentum portfolios, Table 3 reports for each individual testing portfolio the alpha from

the investment-based model, αq
i , defined in equation (7). In the equation the levered investment

returns are constructed using the parameter estimates in Table 2. We also report the t-statistics

that test that a given αq
i equals zero, using standard errors calculated from one-stage GMM.

From Panel A of Table 3, the alphas for the momentum deciles range from −4.01% to 2.38%

per annum. The winner-minus-loser decile has a small alpha of 1.23%, which is within 0.6 standard

errors from zero. In terms of economic magnitude, this alpha is negligible compared to the large

alphas from the traditional models: 14.97% from the CAPM, 16.46% from the Fama-French model,

and 14.87% from the standard consumption-CAPM. Figure 1 reports graphically the performance

of the different models by plotting the average predicted returns of the momentum deciles against

their average realized stock returns. If a model’s performance is perfect, all the observations should

lie exactly on the 45-degree line. From Panel A, the scatter plot from the investment-based model

is closely aligned with the 45-degree line. The remaining panels of the figure show that the scatter

plots from the CAPM, the Fama-French model, and the standard consumption-CAPM are all

largely horizontal. The evidence shows that the errors from the investment-based model do not

vary systematically across the momentum deciles, whereas the errors from the traditional models do.

The investment-based model fits even better for the industry momentum quintiles. From Panel

B of Table 3, the alphas range from −0.51% to 0.94% per annum, all of which are within 0.4 standard
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errors from zero. The winner-minus-loser quintile has a small alpha of 0.61% (t = 0.34). This alpha

is smaller than those from the traditional models by an order of magnitude: 6.65% from the CAPM,

9.73% from the Fama-French model, and 6.76% from the consumption-CAPM. Figure 2 further

confirms the superior fit of the investment-based model for the industry momentum portfolios.

Panel C of Table 3 reports larger alphas for the nine size and momentum portfolios. The

individual alphas range from −4.53% to 5.46% per annum. The winner-minus-loser alphas are

−0.46%, 1.13%, and 0.75% across the small, median, and big size terciles, and are all within one

standard error from zero. These alphas are all lower than those from the traditional models reported

in Table 1: 9.52%–10.78% in the small tercile, 8.06%–9.98% in the middle tercile, and 5.55%–6.93%

in the big tercile. Panel A of Figure 3 shows that the scatter plot from the investment-based model

is largely aligned with the 45-degree line, but the fit is worse than the fit for the one-way sorted

momentum portfolios. In contrast, the remainder of the figure shows that the scatter plots from

the traditional models are all largely horizontal, indicating that these models fail to explain the

average returns across the size and momentum portfolios.

Panel D of Table 3 reports small errors for the firm age and momentum portfolios. The indi-

vidual alphas range from −2.58% to 2.99% per annum. The winner-minus-loser alphas are 0.07%,

−0.17%, and−1.43% across the young, median, and old firm age terciles. The alphas are again lower

than those from the traditional models: 10.11%–11.50% in the young age tercile, 6.94%–7.93% in the

median age tercile, and 5.35%–7.33% in the old age tercile. The scatter plots in Figure 4 confirm the

dramatic difference in performance between the investment-based model and the traditional models.

Panel E of Table 3 reports large alphas in the investment-based model across the nine volume and

momentum portfolios. The individual alphas range from −5.39% to 7.27% per annum, and six out of

nine alphas have magnitudes larger than 2.5%. However, none of the alphas are significant at the 5%

level probably due to measurement errors in portfolio characteristics. As such, we only emphasize

the economic magnitude of the alphas, instead of their insignificance. The large individual alphas do
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not vary systematically with short-term prior returns. The alphas of the winner-minus-loser portfo-

lios are 0.55%, 2.75%, and 1.27% in the low, median, and high volume terciles, respectively. These

alphas are all lower than those from the traditional models: 3.85%–7.49% in the low tercile, 7.43%–

8.49% in the median tercile, and 10.19%–15.67% in the high tercile. Figure 5 illustrates the model

fit graphically. The scatter plots from the traditional models are all largely horizontal. Although the

scatter plot from the investment-based model is not horizontal, it indicates large individual alphas.

From Panel F of Table 3, the individual alphas across the stock return volatility and momentum

portfolios, ranging from −5.16% to 5.31% per annum, are largely similar in magnitude as those

across the volume and momentum portfolios. The winner-minus-loser alphas are −0.89%, 1.69%,

and 0.77% in the low, median, and high return volatility terciles, respectively. These alphas are

again lower than those from the traditional models. From Figure 6, Panel A shows that the

investment-based model’s fit for the return volatility and momentum portfolios is similar to the fit

for the trading volume and momentum portfolios. The remaining panels of the figure show largely

horizontal scatter plots from the traditional models.

Panel G of Table 3 shows that the investment-based model has its worst fit in the cash flow

volatility and momentum portfolios. The individual alphas range from −8.35% to 7.62% per annum.

Five out of nine portfolios have individual alphas with magnitude higher than 5% per annum, and

all portfolios have alphas with magnitude higher than 2.5%. However, as in the case of all the other

sets of momentum portfolios, the alphas do not vary systematically with momentum. The winner-

minus-loser alphas are 1.24%, 1.03%, and −2.26% in the low, median, and high cash flow volatility

terciles, respectively. In contrast, the alphas from the traditional models are 6.26%–7.62% in the

low volatility tercile, 8.20%–9.95% in the median tercile, and 10.17%–12.00% in the high volatility

tercile. Panel A of Figure 7 shows large individual alphas from the investment-based model, but

the scatter plot goes in the same direction as the 45-degree line. In contrast, the remainder of the

figure shows largely horizontal scatter plots from the traditional models.
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4.2.3 Sources of Momentum Profits

What drives our estimation results? The investment return equation (3) and the levered investment

return equation (5) suggest several sources of cross-sectional variations of expected stock returns.

Each source comes from a specific component of the levered investment return.

The first source is investment-to-capital, Iit/Kit, in the denominator of the investment return.

The second source is the growth rate of marginal q, defined as qit ≡ 1 + (1 − τ t)a(Iit/Kit). This

term can be viewed as the “capital gain” portion of the investment return because marginal q is

related to the stock price. The third source is the marginal product of capital, Yit+1/Kit+1, in

the numerator of the investment return. The fourth source is the depreciation rate, δit+1. Col-

lecting terms involving δit+1 in the numerator of the investment return shows a negative relation

between δit+1 and the expected return. The fifth source is the market leverage, wit, in the levered

investment return, which shows a positive relation between wit and the expected return. The sixth

source is the after-tax corporate bond return, rBa
it+1

. In all, ceteris paribus, firms with low Iit/Kit,

high expected qit+1/qit, high expected Yit+1/Kit+1, low expected δit+1, high wit, and low expected

rBa
it+1 should earn higher expected stock returns at time t.

To provide intuition behind our results, Table 4 reports the averages of four components of the

levered investment returns across the testing portfolios including Iit/Kit, qit+1/qit, Yit+1/Kit+1, and

wit. In the case of the growth rate of q, because q involves the unobserved adjustment cost param-

eter, a, we instead report the average growth rate of investment-to-capital, (Iit+1/Kit+1)/(Iit/Kit).

The averages of the depreciate rate and the after-tax corporate bond return are largely flat across

the momentum portfolios, and their quantitative impact on the estimation results is small. As

such, we do not tabulate their averages to save space.

Panel A of Table 4 shows that there is virtually no spread in Iit/Kit across extreme momentum

deciles. However, winners have significantly higher growth rates of investment-to-capital from t to

t+ 1 and sales-to-capital at t+ 1 than losers. The spreads are 0.31 and 0.35, respectively, both of
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which are more than five standard errors from zero. Both components go in the right direction to

explain expected stock returns. Going in the wrong direction, however, winners have lower market

leverage than losers. The spread of −0.09 is more than 4.5 standard errors from zero.

From Panel B, industry momentum winners also have higher growth rates of investment-to-

capital than industry momentum losers. The spread is 0.11 across the two extreme quintiles, and is

more than 7.5 standard errors from zero. The winner quintile also has a higher sales-to-capital ratio

than the loser quintile, although the spread of 0.13 is within 1.7 standard errors of zero. The extreme

quintiles have largely identical investment-to-capital at time t. Although the winner quintile has

significantly lower market leverage than the loser quintile, the spread of −0.03 is economically small.

The remainder of Table 4 shows how the economically important cross-sectional spreads in

(Iit+1/Kit+1)/(Iit/Kit) and Yit+1/Kit+1 between winners and losers vary across terciles formed on

size, firm age, trading volume, stock return volatility, and cash flow volatility. From Panel C,

the spread in wit does not vary across the size terciles. However, the spread in the growth rate of

investment-to-capital is higher in small firms than in big firms: 0.33 versus 0.14. The spread in sales-

to-capital follows the same pattern: 0.37 versus 0.21. The spread in investment-to-capital again

does not exist across extreme momentum portfolios. Panel D shows that the spread in the growth

rate of investment-to-capital is higher in young firms than in old firms, 0.21 versus 0.14. However,

the sales-to-capital spread and the market leverage spread are both flat across the firm age terciles.

From Panel E, the spread in the growth rate of investment-to-capital across the momentum

terciles increases with trading volume. This spread is 0.12 in the low volume tercile, but is 0.26 in

the high volume tercile. This cross-sectional variation goes in the right direction to explain the ex-

pected stock returns. However, albeit not monotonic, the sales-to-capital spread moves in the wrong

direction: 0.28 in the low volume tercile, 0.16 in the median tercile, and 0.22 in the high volume

tercile. Moreover, also going in the wrong direction, the market leverage spread increases in mag-

nitude with trading volume: −0.03 in the low volume tercile but −0.09 in the high volume tercile.
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The pattern that two characteristics move in the wrong direction cross-sectionally as the expected

returns gives rise to the relatively large alphas across the volume and momentum portfolios.

Panel F shows that the spread in the growth rate of investment-to-capital across the momen-

tum terciles increases with stock return volatility. The spread is 0.12 in the low volatility tercile,

but is 0.28 in the high volatility tercile. This variation goes in the right direction to explain the

expected returns. However, the sales-to-capital spread moves in the wrong direction: 0.25 in the

low volatility tercile but 0.19 in the high volatility tercile. The market leverage spread is largely

flat across the return volatility terciles. Finally, Panel G shows that both the spread in the growth

rate of investment-to-capital and the spread in sales-to-capital increase with cash flow volatility.

The cross-sectional variations go in the right direction to explain the expected returns.

4.2.4 Accounting for Momentum Profits

To quantify the role of each component in the levered investment return, we conduct the following

comparative static analysis. We set a given component to its cross-sectional average in each year.

We then use the parameter estimates in Table 2 to reconstruct levered investment returns, while

keeping all the other components unchanged. We examine the resultant change in the magnitude of

the alphas. A large change would mean that the component in question is quantitatively important.

Table 5 shows that the growth rate of marginal q is the most important source of momentum

profits, and the sales-to-capital ratio is the second most important. From Panel A, without the

cross-sectional variation in the growth rate of q, the winner-minus-loser alpha dramatically inflates

to 13.17% per annum from the level of 1.23% in the benchmark estimation (see Table 3). In addi-

tion, eliminating the cross-sectional variation in sales-to-capital gives rise to a winner-minus-loser

alpha of 5.44%. Without the variation in the current-period investment-to-capital, the winner-

minus-loser alpha only increases slightly to 1.92%. Finally, because market leverage goes to the

wrong direction to explain the expected returns (see Table 4), eliminating its cross-sectional varia-

tion across the momentum portfolios works to reduce the winner-minus-loser alpha to 0.49%. The
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industry momentum results are largely similar (Panel B). The alpha of the winner-minus-loser quin-

tile in the benchmark estimation is 0.61% per annum. Eliminating the cross-sectional variations in

the growth rate of q and sales-to-capital increases this alpha to 5.43% and 2.07%, respectively.

The remainder of Table 5 demonstrates the quantitative importance of the growth rate of q and

sales-to-capital in the double sorted momentum portfolios. From Panel C, fixing the growth rate of

q to its cross-sectional averages produces alphas of 8.22%, 6.89%, and 4.07% for the winner-minus-

loser portfolio across the size terciles. Eliminating the cross-sectional variation in sales-to-capital

generates alphas of 2.95%, 4.04%, and 2.92%, respectively. In contrast, in the benchmark estimation

(see Table 3), these alphas are −0.46%, 1.13%, and 0.75%, respectively. The comparative statics

for the firm age and momentum portfolios are similar. From Panel D, fixing the growth rate of q to

its cross-sectional averages produces alphas of 8.33%, 6.06%, and 2.65% for the winner-minus-loser

portfolio across the firm age terciles. Eliminating the cross-sectional variation in sales-to-capital

generates alphas of 2.71%, 1.69%, and 1.49%, which are larger in magnitude than those in the

benchmark estimation: 0.07%,−0.17%, and −1.43%, respectively.

Panel E confirms that the growth rate of q and sales-to-capital are also the most important

sources of momentum profits in the trading volume and momentum portfolios. Fixing the growth

rate of q to its cross-sectional averages produces alphas of 3.68%, 6.46%, and 9.44% for the winner-

minus-loser portfolio across the trading volume terciles. Eliminating the cross-sectional variation in

sales-to-capital generates alphas of 4.01%, 4.50%, and 4.10%, respectively. In contrast, in the bench-

mark estimation, the winner-minus-loser alphas are 0.55%, 2.75%, and 1.27%, respectively. From

Panel F, fixing the growth rate of q to its cross-sectional averages produces alphas of 2.21%, 7.09%,

and 10.52% for the winner-minus-loser portfolio across the return volatility terciles. Fixing sales-

to-capital to its cross-sectional averages generates alphas of 1.97%, 3.57%, and 3.32%, respectively.

In contrast, the alphas in the benchmark estimation are −0.89%, 1.69%, and 0.77%, respectively.

The growth rate of q and sales-to-capital are also the most important for driving the cash flow
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volatility and momentum portfolios. Panel G shows that without the cross-sectional variation in the

growth rate of q the winner-minus-loser alphas are 5.52%, 6.50%, and 7.87% across the low, median,

and high cash flow volatility terciles, respectively. Fixing sales-to-capital to its cross-sectional aver-

ages produces alphas of 3.29%, 3.86%, and 1.75%, respectively. In contrast, the winner-minus-loser

alphas are 1.24%, 1.03%, and −2.26%, respectively, in the benchmark estimation. In particular,

with the cross-sectional variation in sales-to-capital in the benchmark estimation, the investment-

based model predicts an average winner-minus-loser return that is higher than that in the data by

2.26% in the high cash flow volatility tercile (αq = −2.26%). Without the cross-sectional variation

in sales-to-capital, the investment-based model predicts an average winer-minus-loser return that

is lower than that in the data by 1.75% in the high cash flow volatility tercile (αq = 1.75%).

5 Conclusion

We offer an investment-based explanation of momentum profits. The neoclassical theory of invest-

ment suggests that expected stock returns are related to the ratio of the next-period marginal bene-

fits of investment divided by the current-period marginal costs of investment. Using GMM, we show

that the investment-based model matches reasonably well with the expected stock returns across a

wide array of momentum portfolios. Intuitively, winners have higher expected growth of investment-

to-capital and higher expected sales-to-capital than losers. As a result, winners earn higher expected

stock returns than losers. Differing from the bulk of the momentum literature, our model does not

assume any form of behavioral biases. Although we do not rule out the possibility that investors

can be irrational, we argue that irrationality is not necessary to explain momentum profits. In

particular, our results suggest that momentum is consistent with the value maximization of firms.
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Table 1 : Descriptive Statistics for Testing Portfolios

For all testing portfolios, we report (in annual percent) average stock returns, r̄S, stock return
volatilities, σS , the CAPM alphas from monthly market regressions, α, the alphas from monthly
Fama-French (1993) three-factor regressions, αFF , and the alphas from the standard consumption-
CAPM with power utility, αC , and the t-statistics for the alphas adjusted for heteroscedasticity and
autocorrelations. m.a.e. is the mean absolute error for a given set of testing portfolios. W−L denotes
the winner-minus-loser portfolio. For the CAPM and the Fama-French model, the p-values (p-val)
in the last column in each panel are from the Gibbon, Ross, and Shanken (1989) tests of the null
hypothesis that the alphas for a given set of testing portfolios are jointly zero. For the consumption-
CAPM, the p-values are for the χ2 test from one-stage GMM that the moment restrictions for a
given set of testing assets are jointly zero. See Section 3.2 for the detailed description of all the
testing portfolios. In Panel A for the standard consumption-CAPM, the time preference estimate
is ρ = 2.38 (standard error 0.51) and the risk aversion estimate is γ = 81.05 (24.26). In Panel
B ρ = 2.34 (0.47), γ = 76.93 (25.51); in Panel C ρ = 2.37 (0.50), γ = 86.16 (24.69); in Panel
D ρ = 2.40 (0.55), γ = 86.18 (23.49); in Panel E ρ = 2.41 (0.55), γ = 86.69 (23.25); in Panel F
ρ = 2.41 (0.57), γ = 89.13 (24.11); and in Panel G ρ = 2.40 (0.54), γ = 84.92 (24.64).

Panel A: Ten momentum deciles

L 2 3 4 5 6 7 8 9 W W−L m.a.e. p-val

r̄S 5.24 10.56 12.27 13.15 13.59 14.51 14.41 15.25 16.81 20.27 15.04
σS 24.00 19.62 18.31 17.58 17.37 17.18 17.30 17.86 19.17 23.55 13.65
α −7.51 −1.19 0.85 1.91 2.37 3.31 3.16 3.80 5.00 7.46 14.97 3.66 0.00
[t] −4.06 −0.79 0.62 1.46 1.86 2.66 2.56 3.14 3.66 3.82 8.16
αFF −9.53 −4.34 −2.27 −1.31 −0.65 0.33 0.51 1.42 3.05 6.92 16.46 3.03 0.00
[t] −6.42 −4.26 −2.62 −1.70 −0.83 0.50 0.77 2.28 4.52 6.12 8.20
αC −9.94 −3.18 −1.49 −0.52 0.51 1.18 1.37 1.41 2.92 4.93 14.87 2.75 0.00
[t] −2.05 −0.86 −0.44 −0.17 0.19 0.42 0.50 0.45 0.84 1.16 0.67

Panel B: Five industry momentum quintiles

L 2 3 4 W W−L m.a.e. p-val

r̄S 9.46 11.59 11.38 13.78 16.33 6.87
σS 19.05 17.75 18.53 19.10 20.22 14.87
α −1.81 0.51 0.01 2.22 4.84 6.65 1.88 0.00
[t] −1.78 0.67 0.02 2.59 3.49 5.32
αFF −4.87 −1.50 −2.03 1.20 4.87 9.73 2.89 0.00
[t] −2.75 −1.10 −1.29 1.05 3.43 4.18
αC −3.11 0.32 −0.96 0.38 3.65 6.76 1.68 0.01
[t] −1.01 0.14 −0.29 0.12 1.07 0.36

Panel C: Nine size and momentum portfolios

Small 2 Big

L 2 W W−L L 2 W W−L L 2 W W−L m.a.e. p-val

r̄S 9.40 15.57 19.18 9.78 9.28 13.64 17.34 8.05 8.97 11.69 14.50 5.53
σS 22.18 18.97 22.25 8.89 21.86 18.19 21.41 11.23 18.78 15.62 18.13 11.74
α −2.64 4.35 6.88 9.52 −3.22 2.09 4.83 8.06 −2.71 0.79 2.84 5.55 3.37 0.00
[t] −1.35 2.40 3.42 8.02 −2.16 1.72 3.49 5.43 −2.33 1.09 2.96 3.16
αFF −6.22 0.30 4.56 10.78 −5.06 −0.69 4.34 9.40 −3.50 −0.33 3.43 6.93 3.16 0.00
[t] −5.31 0.38 5.37 8.70 −3.83 −0.79 4.84 5.78 −2.84 −0.46 3.68 3.88
αC −5.74 0.53 4.14 9.88 −4.77 1.44 5.21 9.98 −4.35 0.62 1.81 6.17 3.18 0.00
[t] −1.36 0.15 1.02 0.77 −1.17 0.64 1.61 0.54 −1.09 0.26 0.47 0.33
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Panel D: Nine firm age and momentum portfolios

Young 2 Old

L 2 W W−L L 2 W W−L L 2 W W−L m.a.e. p-val

r̄S 8.25 15.02 18.34 10.09 11.39 14.86 18.22 6.83 11.24 13.62 16.58 5.34
σS 22.10 18.94 21.12 10.12 19.90 17.31 19.04 9.75 18.53 16.04 17.70 9.82
α −3.90 3.55 6.21 10.11 −0.22 3.81 6.73 6.94 −0.08 2.83 5.27 5.35 3.62 0.00
[t] −1.91 2.13 3.37 7.29 −0.12 2.55 4.24 5.08 −0.05 2.41 4.03 3.70
αFF −8.32 −0.46 3.18 11.50 −4.34 0.16 3.59 7.93 −4.15 −0.72 2.31 6.46 3.03 0.00
[t] −5.40 −0.44 2.44 8.21 −3.38 0.17 3.57 5.65 −3.31 −0.85 2.30 4.50
αC −7.55 0.29 3.65 11.21 −3.25 2.19 4.00 7.25 −3.46 1.44 3.87 7.33 3.30 0.00
[t] −1.44 0.08 0.92 0.47 −0.76 0.97 1.23 0.35 −0.97 0.63 1.84 0.44

Low 2 High

L 2 W W−L L 2 W W−L L 2 W W−L m.a.e. p-val

Panel E: Nine trading volume and momentum portfolios

r̄S 12.09 15.22 18.34 6.26 11.36 14.96 18.58 7.22 7.73 13.40 17.53 9.80
σS 16.76 14.64 15.88 7.82 19.69 17.44 18.30 9.06 24.25 21.59 22.69 11.73
α 1.66 5.13 7.90 6.24 −0.30 3.79 7.13 7.43 −5.24 0.95 4.96 10.19 4.12 0.00
[t] 1.00 3.85 5.49 5.47 −0.17 2.68 4.97 5.80 −2.48 0.54 2.45 5.89
αFF −2.82 1.41 4.67 7.49 −4.46 −0.02 4.03 8.49 −9.47 −2.52 1.97 11.44 3.49 0.00
[t] −2.37 1.60 4.30 6.59 −3.47 −0.02 4.08 6.68 −5.61 −1.86 1.33 6.43
αC −1.69 1.20 2.16 3.85 −3.73 2.23 4.92 8.65 −9.02 0.77 6.65 15.67 3.60 0.00
[t] −0.55 0.39 0.57 0.43 −0.86 0.91 1.58 0.46 −1.56 0.29 2.68 0.38

Panel F: Nine stock return volatility and momentum portfolios

r̄S 13.08 14.65 17.44 4.36 11.63 15.33 19.36 7.74 8.00 13.83 18.96 10.96
σS 15.80 14.25 14.89 7.93 19.77 18.08 18.55 8.83 25.06 22.96 23.16 11.14
α 2.85 4.64 7.19 4.33 0.16 4.15 8.07 7.91 −4.77 1.38 6.53 11.31 4.42 0.00
[t] 1.86 3.95 6.44 3.71 0.09 2.84 5.39 6.30 −2.11 0.69 3.14 7.23
αFF −1.02 1.47 4.98 6.00 −4.33 0.28 5.01 9.33 −9.14 −2.65 3.21 12.35 3.57 0.00
[t] −0.90 1.74 5.52 5.58 −3.44 0.29 4.83 7.50 −5.38 −2.23 2.39 7.57
αC −0.56 2.11 4.45 5.00 −3.71 2.00 6.19 9.90 −9.63 −2.77 5.30 14.93 4.08 0.00
[t] −0.20 0.95 1.39 0.40 −0.81 0.74 2.10 0.44 −1.73 −0.68 1.63 0.55

Panel G: Nine cash flow volatility and momentum portfolios

r̄S 11.34 14.37 18.07 6.73 10.89 15.03 19.12 8.24 7.64 13.06 18.52 10.88
σS 18.41 15.74 18.48 10.36 20.07 17.20 19.87 10.45 23.15 20.06 24.19 11.25
α −0.04 3.62 6.56 6.61 −0.95 3.87 7.25 8.20 −4.81 1.23 5.63 10.44 3.77 0.00
[t] −0.03 3.07 4.99 4.74 −0.60 3.07 4.94 5.84 −2.55 0.77 2.75 7.11
αFF −3.20 0.52 4.42 7.62 −4.11 0.74 5.85 9.95 −7.17 −1.53 4.83 12.00 3.60 0.00
[t] −2.75 0.67 5.13 5.17 −3.56 1.05 7.75 6.94 −6.31 −2.09 4.12 7.69
αC −3.30 1.80 2.96 6.26 −4.51 1.24 5.28 9.79 −7.04 −1.11 3.13 10.17 3.37 0.00
[t] −0.84 0.69 1.02 0.45 −1.05 0.46 1.65 0.54 −1.68 −0.31 0.67 0.56
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Table 2 : GMM Parameter Estimates and Tests of Overidentification

Results are from one-stage GMM with an identity weighting matrix. a is the adjustment cost parameter and κ is the capital’s share.
The standard errors ([ste]) are reported beneath the point estimates. χ2, d.f., and p-val are the statistic, the degrees of freedom, and
the p-value testing that the expected return errors across a given set of testing assets are jointly zero. m.a.e. is the mean absolute
expected return error in annualized percent for a given set of testing portfolios.

(1) (2) (3) (4) (5) (6) (7)
Momentum Industry Size and Age and Volume and Return volatility Cash flow volatility

momentum momentum momentum momentum and momentum and momentum

a 5.40 7.82 3.26 4.87 4.14 4.41 4.48
[ste] [1.14] [4.12] [0.55] [1.19] [0.96] [0.78] [1.02]
κ 0.20 0.19 0.14 0.20 0.19 0.19 0.17
[ste] [0.03] [0.03] [0.02] [0.02] [0.02] [0.02] [0.02]
χ2 8.45 4.20 7.22 7.61 8.06 8.23 8.55
d.f. 8 3 7 7 7 7 7
p-val 0.39 0.24 0.41 0.37 0.33 0.31 0.29
m.a.e. 1.72 0.49 3.44 1.37 3.59 3.56 5.62
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Table 3 : Alphas from the Investment-Based Expected Stock Return Model

The alphas (in annual percent) and t-statistics are from one-stage GMM with an identity weighting
matrix. The moment conditions are E

[

rSit+1
− rIwit+1

]

= 0, in which rS is the stock return, and rIw

is the levered investment return. The alphas are calculated from αq
i ≡ ET

[

rSit+1
− rIwit+1

]

, in which
ET [·] is the sample mean of the series in brackets. L denotes losers, W denotes winners, and W−L
denotes the differences between the loser and winner portfolios.

Panel A: Ten momentum deciles

L 2 3 4 5 6 7 8 9 W W−L

αq −4.01 0.05 1.76 2.38 1.79 2.32 0.92 0.35 −0.88 −2.78 1.23
[t] −1.24 0.02 0.61 0.83 0.64 0.83 0.36 0.12 −0.30 −0.80 0.59

Panel B: Five industry momentum quintiles

L 2 3 4 W W−L

αq −0.33 0.94 −0.51 −0.37 0.28 0.61
[t] −0.14 0.38 −0.21 −0.14 0.11 0.34

Panel C: Nine size and momentum portfolios

Small 2 Big

L 2 W W−L L 2 W W−L L 2 W W−L

αq −4.07 −2.40 −4.53 −0.46 0.78 2.52 1.91 1.13 4.28 5.46 5.02 0.75
[t] −1.07 −0.70 −1.12 −0.38 0.29 0.90 0.66 0.93 1.34 1.79 1.74 0.52

Panel D: Nine firm age and momentum portfolios

Young 2 Old

L 2 W W−L L 2 W W−L L 2 W W−L

αq −2.58 0.69 −2.51 0.07 −0.01 2.99 −0.17 −0.17 1.11 1.92 −0.32 −1.43
[t] −0.66 0.20 −0.67 0.05 0.00 1.10 −0.07 −0.09 0.43 0.77 −0.14 −1.06

Low 2 High

L 2 W W−L L 2 W W−L L 2 W W−L

Panel E: Nine trading volume and momentum portfolios

αq 3.54 7.27 4.09 0.55 −0.39 1.82 2.36 2.75 −5.39 −3.37 −4.12 1.27
[t] 1.14 1.95 1.27 0.46 −0.14 0.69 0.80 1.61 −1.49 −1.09 −1.23 0.82

Panel F: Nine stock return volatility and momentum portfolios

αq 4.60 5.31 3.71 −0.89 0.66 2.46 2.35 1.69 −5.16 −3.41 −4.39 0.77
[t] 1.47 1.73 1.35 −0.86 0.21 0.87 0.83 1.15 −1.49 −0.96 −1.20 0.56

Panel G: Nine cash flow volatility and momentum portfolios

αq 6.38 7.58 7.62 1.24 2.57 4.40 3.60 1.03 −6.10 −4.00 −8.35 −2.26
[t] 1.85 2.04 2.17 0.92 0.91 1.60 1.12 0.80 −1.73 −1.33 −1.93 −0.99
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Table 4 : Economic Characteristics of Testing Portfolios

For each testing asset i we report the averages of investment-to-capital (Iit/Kit), the growth rate of investment-to-capital
((Iit+1/Kit+1)/(Iit/Kit)), sales-to-capital (Yit+1/Kit+1), and market leverage (wit). L denotes losers, and W winners. W−L is the
differences between the winner and loser portfolios, and [t] is the t-statistics for the differences.

Panel A: Ten momentum deciles

L 2 3 4 5 6 7 8 9 W W−L [t]

Iit/Kit 0.13 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.13 0.00 −0.19
Iit+1/Kit+1

Iit/Kit

0.85 0.94 0.96 0.97 1.00 1.01 1.03 1.05 1.09 1.16 0.31 16.89

Yit+1/Kit+1 1.57 1.47 1.45 1.44 1.45 1.47 1.51 1.58 1.70 1.92 0.35 5.15
wit 0.34 0.29 0.27 0.26 0.26 0.24 0.24 0.24 0.24 0.25 −0.09 −4.82

Panel B: Five industry momentum quintiles

L 2 3 4 W W−L [t]

Iit/Kit 0.11 0.11 0.11 0.11 0.11 0.00 −0.26
Iit+1/Kit+1

Iit/Kit

0.95 0.97 0.99 1.03 1.06 0.11 7.87

Yit+1/Kit+1 1.47 1.50 1.54 1.58 1.60 0.13 1.61
wit 0.29 0.27 0.27 0.26 0.26 −0.03 −2.19

Panel C: Nine size and momentum portfolios

Small 2 Big

L 2 W W−L [t] L 2 W W−L [t] L 2 W W−L [t]

Iit/Kit 0.12 0.11 0.12 0.00 −1.69 0.11 0.11 0.12 0.00 1.50 0.12 0.11 0.12 0.00 −0.55
Iit+1/Kit+1

Iit/Kit

0.86 1.01 1.19 0.33 13.05 0.90 1.01 1.13 0.23 17.25 0.94 1.00 1.08 0.14 9.79

Yit+1/Kit+1 2.13 2.29 2.50 0.37 5.32 1.62 1.69 1.88 0.26 5.73 1.34 1.34 1.55 0.21 4.11
wit 0.39 0.34 0.31 −0.07 −10.77 0.34 0.29 0.28 −0.07 −7.16 0.28 0.24 0.23 −0.05 −4.72
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Panel D: Nine firm age and momentum portfolios

Young 2 Old

L 2 W W−L [t] L 2 W W−L [t] L 2 W W−L [t]

Iit/Kit 0.14 0.12 0.14 0.00 0.12 0.12 0.11 0.12 0.00 −0.61 0.11 0.10 0.11 0.00 −1.02
Iit+1/Kit+1

Iit/Kit

0.88 0.99 1.09 0.21 9.53 0.91 1.01 1.11 0.20 13.44 0.94 1.00 1.08 0.14 8.86

Yit+1/Kit+1 1.69 1.70 1.92 0.22 2.88 1.56 1.48 1.74 0.18 2.20 1.39 1.39 1.62 0.22 4.00
wit 0.30 0.24 0.25 −0.05 −3.77 0.30 0.24 0.25 −0.05 −2.95 0.31 0.26 0.26 −0.05 −4.56

Low 2 High

L 2 W W−L [t] L 2 W W−L [t] L 2 W W−L [t]

Panel E: Nine trading volume and momentum portfolios

Iit/Kit 0.11 0.10 0.11 0.00 0.47 0.11 0.11 0.11 0.00 −0.90 0.13 0.12 0.12 −0.01 −2.90
Iit+1/Kit+1

Iit/Kit

0.95 0.99 1.07 0.12 5.87 0.94 1.01 1.09 0.15 14.32 0.87 1.01 1.12 0.26 10.55

Yit+1/Kit+1 1.35 1.25 1.63 0.28 4.16 1.56 1.56 1.72 0.16 2.41 1.60 1.62 1.83 0.22 4.55
wit 0.24 0.21 0.21 −0.03 −2.75 0.29 0.26 0.25 −0.05 −3.34 0.40 0.34 0.31 −0.09 −6.50

Panel F: Nine stock return volatility and momentum portfolios

Iit/Kit 0.11 0.10 0.11 0.00 0.64 0.12 0.11 0.11 0.00 −0.70 0.13 0.12 0.12 −0.01 −2.44
Iit+1/Kit+1

Iit/Kit

0.96 1.01 1.07 0.12 7.63 0.92 1.01 1.10 0.18 22.16 0.85 0.98 1.13 0.28 13.45

Yit+1/Kit+1 1.37 1.34 1.62 0.25 3.32 1.59 1.57 1.75 0.16 2.72 1.73 1.79 1.92 0.19 3.68
wit 0.26 0.23 0.21 −0.05 −5.23 0.33 0.29 0.26 −0.06 −4.46 0.40 0.35 0.32 −0.07 −8.27

Panel G: Nine cash flow volatility and momentum portfolios

Iit/Kit 0.11 0.10 0.11 0.00 −0.18 0.12 0.11 0.12 0.00 −0.03 0.13 0.12 0.14 0.00 0.29
Iit+1/Kit+1

Iit/Kit

0.93 1.00 1.08 0.15 9.68 0.92 1.02 1.12 0.19 8.98 0.88 1.03 1.19 0.30 8.76

Yit+1/Kit+1 1.18 1.19 1.36 0.18 3.23 1.61 1.66 1.87 0.26 5.60 2.23 2.27 2.64 0.41 4.21
wit 0.27 0.22 0.23 −0.04 −2.68 0.25 0.20 0.21 −0.04 −2.73 0.28 0.23 0.23 −0.05 −3.15
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Table 5 : Accounting for Momentum Profits

We perform four comparative static experiments: Iit/Kit, qit+1/qit, Yit+1/Kit+1, and wit, in which qit+1/qit = [1 + (1 −

τ t+1)a(Iit+1/Kit+1)]/[1 + (1 − τ t)a(Iit/Kit)]. In the experiment denoted Yit+1/Kit+1, we set Yit+1/Kit+1 for a given set of testing
portfolios to be its cross-sectional average in year t + 1. We use the parameters reported in Panel A of Table 2 to reconstruct the
levered investment returns, while keeping all the other characteristics unchanged. The other three experiments are designed analogously.
We report the alphas calculated as αq

i ≡ ET

[

rSit+1
− rIwit+1

]

for the testing portfolios and the winner-minus-loser portfolios.

Panel A: Ten momentum deciles

L 2 3 4 5 6 7 8 9 W W−L

Iit/Kit −9.13 −0.57 2.39 4.35 3.99 4.68 2.77 1.39 −1.14 −7.21 1.92

qit+1/qit −9.35 −2.10 −0.16 0.86 0.99 1.94 1.34 1.50 1.99 3.82 13.17

Yit+1/Kit+1 −3.82 −1.01 0.48 0.93 0.50 1.19 0.38 0.60 0.74 1.63 5.44
wit −3.72 0.16 1.86 2.30 1.72 2.20 0.71 0.28 −1.22 −3.23 0.49

Panel B: Five industry momentum quintiles

L 2 3 4 W W−L

Iit/Kit −0.77 0.59 −0.93 0.63 0.70 1.47

qit+1/qit −2.38 −0.36 −0.97 0.65 3.05 5.43

Yit+1/Kit+1 −1.19 0.63 −0.47 0.16 0.87 2.07
wit −0.19 1.08 −0.45 −0.38 0.23 0.42

Panel C: Nine size and momentum portfolios

Small 2 Big

L 2 W W−L L 2 W W−L L 2 W W−L

Iit/Kit −6.03 −1.01 −5.11 0.92 1.12 4.49 1.55 0.43 3.09 6.84 4.55 1.46

qit+1/qit −7.41 −2.09 0.81 8.22 −1.92 2.18 4.97 6.89 1.65 4.20 5.72 4.07

Yit+1/Kit+1 0.00 3.20 2.94 2.95 −1.71 1.15 2.33 4.04 −0.36 0.94 2.56 2.92
wit −2.80 −1.37 −4.05 −1.25 0.92 2.50 1.54 0.63 4.14 5.24 4.48 0.34

32



Panel D: Nine firm age and momentum portfolios

Young 2 Old

L 2 W W−L L 2 W W−L L 2 W W−L

Iit/Kit −9.28 −0.43 −9.20 0.07 0.16 4.90 0.59 0.43 3.86 6.39 3.84 −0.03

qit+1/qit −6.56 0.73 1.76 8.33 −2.88 2.85 3.18 6.06 −1.22 1.13 1.43 2.65

Yit+1/Kit+1 −1.67 1.47 1.04 2.71 −0.40 1.29 1.29 1.69 −1.43 −0.51 0.05 1.49
wit −2.27 0.43 −2.75 −0.49 0.74 2.63 −0.52 −1.26 1.37 1.92 −0.13 −1.50

Low 2 High

L 2 W W−L L 2 W W−L L 2 W W−L

Panel E: Nine trading volume and momentum portfolios

Iit/Kit 4.43 9.81 4.67 0.24 −0.10 3.82 3.48 3.58 −10.06 −5.66 −5.96 4.10

qit+1/qit 1.65 6.04 5.33 3.68 −2.48 1.47 3.98 6.46 −8.97 −2.03 0.47 9.44

Yit+1/Kit+1 1.06 3.54 5.07 4.01 −0.28 1.71 4.23 4.50 −4.96 −2.83 −0.86 4.10
wit 3.19 6.88 3.24 0.05 −0.23 1.65 2.11 2.34 −3.72 −2.26 −3.55 0.17

Panel F: Nine stock return volatility and momentum portfolios

Iit/Kit 6.71 8.66 5.42 −1.29 0.16 3.50 2.71 2.55 −9.86 −5.65 −6.21 3.65

qit+1/qit 2.42 4.17 4.63 2.21 −2.20 2.23 4.89 7.09 −9.11 −2.92 1.41 10.52

Yit+1/Kit+1 1.58 2.05 3.55 1.97 0.20 1.64 3.77 3.57 −3.92 −1.36 −0.59 3.32
wit 4.43 4.92 2.66 −1.77 1.00 2.26 1.91 0.91 −3.93 −2.53 −3.65 0.29

Panel G: Nine cash flow volatility and momentum portfolios

Iit/Kit 8.58 12.00 10.04 1.47 2.36 6.14 3.67 1.31 −10.83 −5.56 −13.21 −2.38

qit+1/qit 3.37 6.32 8.90 5.52 −0.40 3.62 6.10 6.50 −9.60 −3.54 −1.73 7.87

Yit+1/Kit+1 −0.07 1.56 3.22 3.29 0.72 3.20 4.57 3.86 −1.21 0.85 0.55 1.75
wit 6.50 7.67 7.72 1.22 2.59 4.17 3.36 0.78 −5.54 −4.34 −8.62 −3.08
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Figure 1 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Ten

Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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Figure 2 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Five

Industry Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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Figure 3 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Nine Size

and Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average realized returns

A
ve

ra
ge

 p
re

di
ct

ed
 r

et
ur

ns

Small−winner

Big−loser

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Average realized returns

A
ve

ra
ge

 p
re

di
ct

ed
 r

et
ur

ns

Small−winner

Big−loser

36



Figure 4 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Nine Firm

Age and Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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Figure 5 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Nine

Trading Volume and Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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Figure 6 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Nine Stock

Return Volatility and Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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Figure 7 : Average Predicted Stock Returns vs. Average Realized Stock Returns, Nine Cash

Flow Volatility and Momentum Portfolios

Panel A: The investment-based model Panel B: The CAPM
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Panel C: The Fama-French model Panel D: The standard consumption-CAPM
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